
SCENARIO-BASED APPROACH TO RAPID PROTOTYPING OF
HUMAN-MACHINE SYSTEMS

Nikolai N. Mansurov a), Dmitri Vasura b)

a) Department for CASE tools, Institute for System Programming,
 Russian Academy of Sciences

 B.Kommunisticheskaya 25, Moscow 109004 Russia; nick@ispras.ru
Current: KLOCwork Solutions Corp.,

1 Antares Drive, Ottawa K2E 8C4, Ontario Canada
b) Department for CASE tools, Institute for System Programming,

Russian Academy of Sciences
B.Kommunisticheskaya 25, Moscow 109004 Russia; vasura@ispras.ru

Abstract: This paper discuses a scenario-based approach to rapid prototyping of Human-
Machine Systems, specifically targeted towards the early phases of embedded software
development. The key concept of our approach is so-called co-design of the user interface
prototype and the black-box behavior of the new system. Our approach, together with the
corresponding tool - the MOST Use Case Studio improves collaboration between the
members of the design team, facilitates involvement of business people, customers,
problem domain experts and other non-technical stakeholders into capturing and
validating requirements models and accelerates requirements definition cycle. Copyright
© 2001 IFAC

Keywords: Requirements Analysis, Design, Prototyping, Event Sequence, Simulation,
Interface

1. INTRODUCTION

Lately, time-to-market has become the dominating factor
for industrial success, placing enormous pressure on
manufacturers and developers to find much more efficient
means of producing high-quality software for their
products. At the same time today’s embedded applications
are becoming more complex, especially in the automotive
industry, where in-vehicle displays, instrument clusters,
brake and suspension logic, air bag and engine controllers
are becoming more sophisticated.

According to (IDC, 2000), traditional development
methodologies and tools do not produce applications fast
enough to keep up with customer demands, higher
turnover of software developers and the competitive
pressures from more agile companies. Therefore, there is
an increasing demand for new methodologies and tools

that can speed up the time it takes to design, construct,
deploy and maintain applications.

Rapid capturing and validation of requirements early in
the life cycle is one of the key isues in accelerating
development of Human-Machine Systems. Failure to
understand and validate requirements can result in
frequent and expensive re-work at later phases.
Significant savings can result from reducing the cost of
finding and fixing defects, including field errors.
According to a recent study done by the University of
West Virginia and the US Air Force, (Monkevich, 1999),
most defects can be traced back to the early phases of
software development process (see Fig. 1). The cause of
36% of defects was incorrect requirements translation, 5%
of defects happened because of incomplete requirements,
while another 28% of defects were attributed to logical
design faults. Only 31% of defects were attributed to all
other causes combined.

Specific challenge facing today’s embedded software
engineers is that design requirements for embedded
applications must be communicated accurately and
effectively to all members of the design team, both
internally and externally, between manufacturer and
supplier. Additionally, product design iterations must be
accomplished faster than before to decrease product cycle
times in the competitive marketspace.

Prototyping has been identified as an important approach
to early requirements validation. Prototyping exposes
functional and behavioral aspects of the system as well as
implementation considerations, thereby increasing the
accuracy of requirements and helping to control their
volatility during development (Wood, Kang, 1992).

This paper discusses our scenario-based approach for
rapid prototyping of Human-Machine Systems,
specifically targeted towards the early phases of embeded
software development. The key to our approach is so-
called co-design of the prototype user interface of the
system and the definition of significant behaviors of the
system. We suggest how to use the emerging user
interface to capture scenarios as well as to animate
available scenarios of the emerging behavior
specification. Both processes reinforce each other and
thus reduce the requirements definition cycle. Our
methodology supported by the corresponding Web-based
tool facilitates involvement of business people, customers,
problem domain experts and other stakeholders into
capturing and validating formal requirements models, and
improves communication between the members of the
design team.

The following are the main business objectives of our
approach:

o Upfront definition and validation of the product
with all stakeholders – to stop the snowball of

incorrect decisions driven by incomplete or
incorrectly understood requirements

o Improved communication between members of
the design team, both internally and externally,
by up-front combined visualization of the
prototype user interface and use case
scenariosAchieving acceleration of requirements
validation cycle by using tools to automatically
perform model-to-model transformations, high-
yield validation, as well as generate interface
specifications, code and tests for deployable
components from scenarios

The rest of the paper has the following organization. In
section 2 we provide an overview of our requirements
engineering methodology. In Section 3 we outline the key
ideas of the scenario-based co-design of the user interface
and the behavior specification. In section 4 we outline the
Use Case Studio toolkit, which implements the suggested
approach. In section 5 we provide a brief comparison with
related approaches.

2. OVERVIEW OF OUR SCENARIO-BASED
PROTOTYPING

Our scenario-based prototyping approach consists of
several steps, which can be performed iteratively.
• Capture the set of external actors and use cases as

UML use case diagrams (Booch, 1998);
• Design prototype user interfaces for all external

actors using the Interface Editor tool, which
automatically generates a user-friendly interface of
the formal scenario model;

• Interactively capture desired behavior for each use
case using the generated user interface;

• Specify complete behavior of the system by
identifying episodes (short interaction sequences,
potentially down to individual operations) and
arranging them into a UML Activity Diagram;

• Validate functional requirements using a combination
of visual and formal techniques:
- Animate validation scenarios against the

generated user interface
- Automatically synthesize an executable model

using our Event Automata approach, run model
checking tool on the synthesized model, replay
problematic sequences against the generated user
interface (Mansurov, et. al., 2000).

When the prototype of the system is completed and
validated, several products can be automatically generated
from the scenario model: 1) a draft design specification of
the system in SDL; 2) test cases in standard TTCN
language; 3) source code for components in Java, or C++;
4) interface definitions for components in IDL (Mansurov,
et al, 1999).

36%

28%

5%
5%

5%
6%

7%6%

2%

Requirements
translation
Logic design
Documentation

Incomplete
requirements
Human
Environment

Interface
Data
Other

Defect Source

Fig. 1. Causes of defects

3. CO-DESIGN OF THE USER INTERFACE AND
BEHAVIOR IN SCENARIO-BASED PROTOTYPING

In this section we outline the key idea of our scenario-
based prototyping - co-design of prototype user interfaces
and use case scenario models.

The objective of the co-design approach is to capture
requirements and create a business black-box model of the
system, consisting of the prototype user interface of the
system and the set of the use cases. Each use case is
captured as a scenario, showing interactions between the
system and its environment. Such model can be
effectively understood and validated by the stakeholders
of the future system.

The prototype user interface to the system is designed
using our Interface Editor tool. This can be used to model
graphical user interface of a software system or front
panels of a Human-Machine Interface of a hardware
device. User interface elements are associated with events,
representing interaction between the system and its
environment. This association allows using the prototype
user interface as a front-end to the formal scenario model.

Desired behaviors of the system are captured by directly
activating the elements of the user interface. Associations
with events allow recording activations of the elements of
the user interface as sequences of events in the form of a
Message Sequence Chart (ITU-T, 2000) or UML
Sequence Diagram. Captured scenarios can be refined
using the Scenario Editor tool.

Animating scenarios against the prototype user interface
can validate the system definition. At this step, additional
scenarios can be added to the use case. If any problems of
inconsistencies are discovered either in user interface, or
in the behavior description, one should go back to the
previous steps and change the appropriate parts of the use
case model.

It is important to engage stakeholders into the process of
prototyping the system, especially into the design of the
user interface. Research into requirement elicitation
indicates that customer participation in sketching the
high-level prototype user interface of the future system
might be one of the most effective strategies for
discovering hidden requirements and implicit expectations
of customers (Shipman, et. al, 2000).

4. THE MOST USE CASE STUDIO TOOLKIT

We developed tool support for our scenario-based
approach to rapid prototyping - the MOST Use Case
Studio. The MOST Use Case Studio implements the
scenario-based co-design of user interface and behavior.

The MOST Use Case Studio consists of a set of
visualization tools and Validation and Code Generation
Kernel, described in (Mansurov, 1999). The Kernel uses
automatic synthesis technique to produce executable code
from scenarios. The Kernel is based on our MOST-SDL
tool (Mansurov, 1999).

Visualization tools of the MOST Use Case Studio toolkit
include the following:
• Interface Editor - an interactive tool to create and edit

prototype user interfaces;
• Scenario Recorder – uses the generated user interface

to capture or animate scenarios. The Scenario
Recorder tool uses the Video Camera metaphor with
"Play", "Record", "Fast Forward" and "Fast
Backward" buttons (see Fig. 2);

• Scenario Editor - a visual editor for scenarios
represented as UML Sequence Diagrams or ITU-T
Message Sequence Charts;

• Episode Editor - a visual editor for so-called episode
sequences represented as UML Activity Diagrams or
ITU-T High-Level Message Sequence Charts;

• Episode Simulator, - visual interface to simulation of
UML Activity Diagrams;

• Use Case Editor - a visual editor for UML use cases
• Model Navigator - visual access to the repository.
• Web interface – presents scenario models through the

Internet. Our Web interface allows collaboration of
design team members by publishing models on the
Web. The Web interface also allows capturing and
validating scenarios through the Web (similar to the
Scenario Recorder).

4.1. Interface Editor

Interface Editor of the MOST Use Case Studio allows to
visually and intuitively prototype a user interface, without
having any experience in programming such interfaces for
industry applications.

The editor looks like a graphical editor (see Fig. 2). The
prototype user interface is defined as a set of panels. Each
panel has a background (which can be imported from a
digital camera, or from a scanner). The background has
several active areas, the so-called user interface (UI)
elements. Active areas can be visually arranged on the
screen to create the desired layout. Input elements can be
associated with an activation effect, which creates an
illusion of a virtual user activating this element during
animation of scenarios (see Fig. 3).

Generated user interface is used to capture scenarios, as
well as to present traces for validation. Generated user
interface is controlled by the Scenario Recorder tool.

The association between UI elements and events has dual
use: in “record” mode this association is used to create
(edit) a Sequence Diagram; in “playback” mode this
association is used to animate a Sequence Diagram.

4.2. Scenario Recorder

When the first draft user interface for a certain use case is
available, scenarios for this use case can be captured using
our Scenario Recorder Tool. This supports our concept of
co-design of the user interface and behavior specification.

Scenario Recorder tool allows to record sequences of
events, corresponding to the interactions between the
system and its environment by visually activating (i.e.
pressing, selecting, switching etc.) UI elements of user
interface panels, created by the Interface Editor.
Sequences of events activated through UI elements can be
simultaneously displayed in the Sequence Diagram
Editor.

Scenario Recorder panel looks like a Video Camera
control panel (see Fig. 3). Using “back” and “fast back”
buttons from the panel the user may undo some steps and
then start recording again or replay the sequence of
actions using buttons “forward” and “fast forward”. Both
back and forward operations are reflected on the Sequence
Diagram.

During simulation all events traversed by the Scenario
Recorder are visualized against the user interface panels
as dynamically changing states of the UI elements.
Activation effects create an illusion of activating the UI
elements by a virtual user.

Scenarios can be created or edited manually using the
Scenario Editor tool of the MOST Use Case Studio (see
Fig. 4). Currently, our Scenario Editor Tool uses the
Message Sequence Chart notation to represent scenarios.

4.3. Episode Editor And Episode Simulator

When all scenarios for a certain use case are recorded in
Scenario Recorder, the Episode Editor of the MOST Use
Case Studio can be used to combine these scenarios into
an Activity Diagram, which specifies complete behaviour
of the system in the given use case. Activity Diagram
consists of the references to individual episodes (or sub-
scenarios) and flow lines, including alternatives and
repetitions (see Fig. 5).

When the Activity Diagram is completed, the use case can
be simulated using the Episode Simulator tool of the Use
Case Studio.

Fig. 2. Interface Editor, updating selected active area

The Episode Simulator also has a Video Camera control
panel. Step-by-step simulation of an Activity Diagram can
be performed using “forward”, “play” and “back” buttons
on the Episode Simulator panel. When the “play” button
is pressed, simulator steps through the Activity Diagram,
i.e. makes a transition from the currently selected symbol
to the next symbol by the flow line. If there are several
possible transitions from the currently selected symbol,
the Episode Simulator highlights all possible symbols, to
which the transition may be done, and asks the user to
make a choice.

When a reference symbol is reached, the corresponding
Sequence Diagram is loaded into the Sequence Diagram
Editor and simulation is continued in the Scenario
Recorder.

5. RELATED WORK

Visualization of formal specifications for non-technical
stakeholders is becoming an active research field (Visual,
1999). For example, AMBER is a visual formal notation
for describing and analysing business processes models
(Luttinghuis, 1999). The TestBed Studio provides a non-
technical GUI for visualizing, creating and simulating the
model.

Several groups explore user-friendly animation of
scenarios aimed at presentation to the stakeholders. Prof.

Jeff Magee uses the so-called SceneBeans to build custom
animations for scenarios (Magee, et. al., 2000). In
contrast, our approach emphasizes very simple means of
building prototype user interfaces, in order to engage
customers into this activity. In our approach, a sketch of
the user interface, provided directly by a customer, can be
scanned and imported into the tool. This however results
in lesser "degree of realism" in animations.

The major difference of our approach, compared to
visualization of state-machine traces, is that we suggest
using the prototype interface not just for requirements
elitication purposes and visualization purposes, but also
for capturing scenarios.

6. CONCLUSIONS

In this paper we presented our scenario-based approach to
rapid prototyping of Human-Machine Systems. Our
approach is targeted towards the early phases of
embedded software development. The key concept of our
approach is so-called co-design of the user interface
prototype and the black-box behavior of the new system.
We have selected very simple means of creating prototype
user interfaces, in order to facilitate involvement of non-
technical stakeholders in requirements definition process.
Our scenario-based approach makes it possible to use the
prototype user interface for capturing the desired
behaviors of the system, as well as for animating these

Fig. 3. Scenario Recorder with the generated user interface in animation mode

behaviors for validation purposes. Our approach, together
with the corresponding tool - the MOST Use Case Studio
- improves collaboration between the members of the
design team, facilitates involvement of business people,
customers, problem domain experts and other non-
technical stakeholders into capturing and validating
requirements models and accelerates requirements
definition cycle

We believe, that the suggested approach together with a
set of analysis, transformation and validation tools
produces a comprehensive rapid prototyping and
requirements definition environment, which can be used
by non-technical experts.

REFERENCES

Booch, G., Rumbaugh, J., Jacobson, I., (1998), The

Unified Modeling Language User Guide,
Addison-Wesley, 1998

Mauw, S. (1999), 1st Int. Symposium on Visual Formal
Methods (VFM'99), Ed. S. Mauw, et.al.,
Eindhoven, The Netherlands, 1999, Computing
Science Reports, Department of Mathematics
and Computing Science, Eindhoven University
of Technology, report 99-08

ITU-T, Rec. Z.120, Message Sequence Charts (MSC),
Geneva, 1996

Mansurov, N (1999), Automatic Synthesis of SDL from
MSC in Forward and Reverse Engineering, In:
(Mauw, 1999), pp. 44-64

Mansurov, N, Vasura, D. (2000), Approximation of
(H)MSC semantics by Event Automata, In: Proc.
SAM'2000 workshop, Grenoble, France, 2000

Monkevich, O., (1999), SDL-based Specification and
Testing Strategy for Communication Network
Protocols, In: Proc. 9th SDL Forum, Montreal,
Canada, June 21-26, 1999

IDC, 2000, Application Design and Construction tools
market forecast and analysis, 2000-2004, May,
2000.

Luttinghuis, P., Visualizing Business Processes, In:
(Mauw, 1999), pp 82-113

Magee, J., Pryce, N., Giannakopoulou, D., Kramer, J.
(2000), Graphical Animation of Behavior
Models,
http://www-dse.doc.ic.uk/Software/SceneBeans

Wood, D., Kang, K. (1992), A Classification and
Bibliography of Software Prototyping, Technical
report, CMU/SEI-92-TR-13, 1992

Shipman, F., Moore, Comparison of Questionnaire-based
and GUI-based Requirements Gathering, In:
Proc. ASE’2000, Grenoble, France, 2000

Fig. 5. Episode Sequence Editor

Fig. 4. Scenario Editor

