
ISSN 0361-7688, Programming and Computer Software, 2008, Vol. 34, No. 6, pp. 351–363. © Pleiades Publishing, Ltd., 2008.
Original Russian Text © R.S. Zybin, V.V. Kuliamin, A.V. Ponomarenko, V.V. Rubanov, E.S. Chernov, C.C. Sidorov, 2008, published in Programmirovanie, 2008, Vol. 34, No. 6.

351

1. INTRODUCTION

Presently, the number of tasks performed by soft-
ware systems, their importance, and requirements for
reliability are growing. For that reason, the complexity
of software is ever increasing and the risks related to
inevitable errors appearing while developing such sys-
tems are growing. The only means for minimizing these
risks is to organize accurate and systematic verification
of conformance to the requirements at all stages of the
software development and maintenance. At the last
stages of the software development, such verification is
usually performed by testing; that is, by observing the
system’s behavior and analyzing its correctness in a
series of specifically designed situations taking into
account all the significant aspects of the target system’s
behavior.

The currently available testing techniques require
considerable effort if one wants to guarantee the com-
pleteness of testing. As the complexity of software
grows, these efforts increase nonlinearly. The automa-
tion of test generation usually cannot considerably
reduce such efforts because it involves a formalization
of the requirements for the software, which are origi-
nally informal, and a classification of test situations.

Sometimes, when testing results are not required to
be very reliable and complete, these efforts are unjusti-
fied. For example, in the sanity testing, we only want to
check that the system does not fail and returns results
that pass the simplest correction tests (no complete test-
ing is performed). Such kind of testing is performed to
make sure that all the system’s functions operate cor-
rectly in simple situations before the system is put to
more thorough and systematic testing that requires
much more effort but is senseless if the system cannot
even cope with simple tasks. Such a testing saves effort
for detecting and localizing gross bugs in complex soft-
ware.

Usually, sanity tests are designed manually; how-
ever, sometimes a large number of interface operations
in the system under test and the availability of complete
and well-structured information about them allow auto-
mation of test generation. If operations are very numer-
ous, the conventional techniques for test suites develop-
ment becomes too labor consuming. At the same time,
information about the syntax of those operations can be
used to automatically generate prototypes of test suites.

Both factors—the large number of operations and
the availability of a database containing information
about the interface operations—are characteristic of the
Linux Standard Base (LSB) [3], which includes several
standards (POSIX [1], ISO C [4], Filesystem Hierarchy
Standard [5], and others) and libraries (Xlib [6],
OpenGL [7], GTK+ [8], and Qt [2]). On the whole,
LSB version 3.1 includes over 30000 functions and
methods. To maintain the text of the standard and the
set of tools for performing various tests, the syntactic
information about all the interfaces included in the
standard is stored in a unified well-structured database.
This makes it possible to use a novel approach to gen-
erating sanity tests for the LSB.

2. AUTOMATION TECHNOLOGY
FOR SANITY TEST GENERATION

For the cases when the system’s interface consists of
thousands of operations and the information about the
interface elements stored in a well-structured form suit-
able for automatic processing, an efficient automation
technology for requirements-based sanity test genera-
tion can be proposed for generating large test suites.
Such a technology called Azov was developed in the
Institute for System Programming (Russian Academy
of Sciences) in 2007.

Automation of Broad Sanity Test Generation

R. S. Zybin, V. V. Kuliamin, A. V. Ponomarenko, V. V. Rubanov, and E. S. Chernov

Institute for System Programming, Russian Academy of Sciences,
Bol’shaya Kommunisticheskaya ul. 25, Moscow, 109004 Russia

e-mail: phoenix@ispras.ru, kuliamin@ispras.ru, susanin@ispras.ru, vrub@ispras.ru, ches@ispras.ru

Received April 28, 2008

Abstract

—The technology for the broad generation of sanity tests for complex software developed in the Insti-
tute for System Programming (Russian Academy of Sciences) is presented. This technology is called Azov; it
is based on using a database containing structured information about the interface operations of the system
under test and on a procedure for enriching this information by refining constraints imposed on parameter types
and results of operations. Results of a practical application of this technology prove its high efficiency in gen-
erating sanity tests for systems with a large number of functions.

DOI:

10.1134/S0361768808060066

352

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 34

No. 6

2008

ZYBIN et al.

This technology uses a database containing infor-
mation about the syntax of operations of the system
under test and assumes that this information is aug-
mented; the augmentation is mainly reduced to refining
(specializing) the types of operations' parameters and
their results. The refinement is performed manually.
After the refinement is performed, correct input data for
each operation can be constructed and some properties
of its result can be checked.

The technology includes the following elements.

• A procedure for refining data about interface oper-
ations.

• A database containing refined syntactic informa-
tion about the operations under test.

• Tools used to add information to the database.

• Sanity test generator that can produce a test suite
for a specified set of operations using the information
stored in the database.

The main idea underlying the proposed technology
is as follows. The information about the parameter
types and results of the operations under test is refined
so as to make it possible to generate parameter values
for simple scenarios of the normal use of the corre-
sponding operations and perform some (far from com-
plete) correctness checks of their results. Since the
same data types are used many times in large systems,
the generation of large test suites can considerably
reduce the effort per each generated test case.

2.1. Initial Data and Expected Results

The initial data for using the proposed technology
are provided by the database containing well-structured
information about the operations of the system under
test (their signatures) and operations documentation.
Currently, we assume that all the operations are func-
tions in C or methods in C++. The change of the base
programming language for another imperative lan-
guage usually requires that only the output module of
the test generator be modified. If the new language uses
methods for passing parameters results that are consid-
erably different from those used in C and C++, a mod-
ification of the database structure and test generation
algorithms may be needed.

The good structure of the information about opera-
tions means that the types of the parameters and opera-
tion results are stored as individual entities referenced
by the entities corresponding to operations. More
detailed requirements for the initial information are
presented in Section 2.5 called “Supporting Tools.”

The documentation for the system under test must
contain sufficient information to enable a developer to
reveal the main scenarios of using all the interface oper-
ations including data sources for operations' arguments
and basic constrains on their results provided that they
operate normally.

The result of working in accordance with the pro-
posed technology is a sanity test suite for all the opera-
tions of the system. For each operation, the test suite
includes a test calling this operation within a simple
scenario of its normal operation that does not cause fail-
ures, exceptions or returning error codes if the system
operates correctly. Also, the test must check the basic
constraints on the operation result. All the arguments
for the call must be formed correctly; if necessary, pre-
liminary calls of other operations initializing the inter-
nal data must be performed; and all the allocated
resources must be freed at the end of the test.

2.2. Organization of the Work in Accordance
with the Azov Technology

The test suites generated using Azov consist of test
cases in the form of programs that sequentially perform
auxiliary operations to prepare the system for work, ini-
tialize parameter values for calling the operation under
test, call this operation, and finalize the system (i.e.,
free the resources). In addition, the basic constraints on
the results of all the operations performed in the course
of the test execution are checked.

The development of test suites using Azov consists
of the following stages.

•

Decomposition of the set of operations into func-
tional groups.

 The system’s interface is decomposed
into groups of operations working on the same internal
data and providing a complete set of actions on them.
First of all, this is required to divide the development
into independent parts that can be assigned to different
developers.

•

Refining information about interface operations in
the database.

 Developers analyze the documentation
concerning the operations in the groups assigned to
them, determine the conditions of their normal opera-
tion, and constraints on the results. The constraints are
written to the database in the form of specialized types
of parameters and operation results. Each type may
have a list of feasible values or actions needed to initial-
ize or destroy data of this type. If, in addition to the
operation’s arguments, global system data must be ini-
tialized for the normal work of an operation, the corre-
sponding initialization and finalization procedures are
specified. The refinement procedure is described below.
To fill the database, auxiliary tools working through a
Web interface are used that enable one to navigate
through the database, find various additional informa-
tion in it, and edit the data. Before the refinement pro-
cedure, the operations under test and the relevant data
types are ordered so that the operations having more
complex parameter types are placed after those that
have simpler parameters and can be used for obtaining
more complex data types. The refinement is performed
beginning with simple operations and gradually pro-
ceeds to more complex ones. With such a procedure,
there is no need to often switch to the analysis of other

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 34

No. 6

2008

AUTOMATION OF BROAD SANITY TEST GENERATION 353

operations, and the information revealed at earlier
stages can be naturally and repeatedly used at later
stages.

•

Verification of the quality of refinement.

 The cor-
rectness of the information placed in the database is
checked by reviewing and analyzing it by other devel-
opers; The verification is also performed by debugging
the generated tests—they must be successfully com-
piled and assembled, and all the problems in their exe-
cution must be caused only by bugs in the system under
test.

•

Test generation.

 The final sanity test suite is gener-
ated using a test generator on the basis of the informa-
tion stored in the augmented database.

•

Test execution.

 The generated test suite can be pro-
duced as a single program or a set of programs in C or
C++. In the latter case, the programs are executed in
batch mode.

•

Analysis of testing results.

 After the execution of
each test, information about its correct execution, vio-
lation of one of the constraints, or about the destruction
of the system under test is produced. The detected prob-
lem is analyzed by a developer and is either fixed as a
bug or implies a modification of some data in the data-
base; in the latter case, the test is executed once more.

2.3. Methodological Foundation of the Technology

The methodological foundation of Azov includes a
technique for refining information about the interface
operations and types of their parameters and results; it
also includes a procedure for automatic test generation
based on the refined information.

The information about the interface operations and
types of their parameters is refined using the following
procedures.

• Refinement (specialization) of types.

�

 If the normal call of an operation requires that an
argument value be within a certain set, a specialized
enumeration type for the corresponding parameter is
defined that has elements of this set as its values.

�

 If the normal call of an operation requires that its
argument value (or object if this operation is a method
of a class) is a result of another operation, a specialized
type is defined that is simultaneously specified as this
argument’s type and the type of the second operation
result.

�

 If the normal call of an operation requires that its
argument value (or object) must be used as an argument
of other operations before calling the operation under
examination, a specialized type is defined for the corre-
sponding parameter and it is associated with an initial-
ization procedure that calls those operations.

�

 If the use of an argument (or call object) requires
that certain resources be freed after it is no longer
needed, a finalization procedure is associated with the
specialized type that frees those resources.

�

 To initialize or finalize certain objects of a given
type, additional operations are sometimes required that
must be called one time in each test case that uses this
type. The procedure performing such additional opera-
tions is also considered as an additional attribute of the
given type.

�

 When the types of parameters are refined, several
parameters are sometimes joined into one abstract
object such that its different elements are used as
parameter values. In this case, a specialized type for
such a composite object is defined.

For example, if a pointer to the beginning of a string
of the type

char*

 and the length of this string are used
as parameters, then a specialized type called “string”
may be defined. Then, the first argument is the pointer
to the first element of the string and the second param-
eter is the result of applying the function

strlen()

 to
the first parameter.

When such composite types are defined, a code for
getting the values of the individual parameters is asso-
ciated with the composite object.

�

 If the normal call of an operation always returns a
result satisfying certain conditions, for example,
returns a nonempty list or an integer greater than zero,
a specialized type for the such a result is defined.

�

 Links between the operation and the original type
of its parameter or result are supplemented with similar
links with the corresponding refined type.

�

 Each time a specialized type is to be introduced,
the existing types are first analyzed to find out if one of
them can be reused instead of defining a new type.

•

Defining initialization and finalization of opera-
tions.

 If some preliminary actions for initializing inter-
nal data of the system must be performed before calling
an operation and (or) some data must be finalized after
the call, the corresponding initialization and finaliza-
tion code is associated with the operation.

•

Defining values of parameter types.

 From the set of
possible types of parameters, simple and derived types
are removed (pointers, references, and the like).
We also remove the types whose values can be obtained
only by calling special operations or constructors and
such types that their arbitrary values can be used as a
parameter value of the corresponding type when a nor-
mal call of an arbitrary operation with such a parameter
is performed. For each of the remaining types, a value
is defined that is used as a parameter value for the cor-
responding type when calling operations. A code for
obtaining this value is stored in the database.

After the refinement is completed, a fairly simple
strategy for test generation can be used. This strategy
uses the refining information in the database to auto-
matically generate sanity tests for all the interfaces. The
main test generation procedure is as follows.

• The initialization code for the corresponding oper-
ation is placed at the beginning of the test.

354

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 34

No. 6

2008

ZYBIN et al.

• The values of all the operation’s parameters are
produced. For each argument type, the value of its
source (not refined) type (or base type for pointers, ref-
erences, and so on) is computed and is then transformed
to the argument value.

�

 If a value for the type is defined in the database, it
is used.

�

 If another operation or constructor must be
invoked to obtain the value or if an initializing code
must be called to this end, a call of this operation or the
corresponding code is inserted. The values of the
parameters for the operations invoked within this code
are computed recursively using the same procedure for
producing parameter values.

Definitions of the auxiliary operations needed to
obtain the parameter values are placed at the beginning
of the test.

�

 The values of other types are produced automati-
cally. For simple types (numerical types, characters,
strings), simple value generators are used. The values
of derived types (pointers, references, and so on) are
obtained from the values of their base types. For enu-
meration types, the first value in the enumeration is
used. Structure objects are constructed field by field,
and the field values are obtained recursively using the
same procedure.

• The operation under test is called with the com-
puted parameter values.

• If necessary, the finalization code for all the param-
eter values used in the test is included.

• At the end (after the call of the operation under
test), the finalization code is included.

• For all the operation calls used in the code, con-
straints on their results associated with the correspond-
ing specialized types are checked. In addition, for all
the pointers appearing in the calls and used later, it is
verified that they are not

NULL

.

When generating tests for protected methods of
classes, which cannot be called from an arbitrary place,
a slightly more complicated procedure is used. Namely,
a class is generated inheriting the class in which the
method under test is defined. In this class, a public
method that is a wrapper over the inherited protected
method is defined. Then, the generated test calls the
public wrapper method for an instance of the inheriting
class.

Some additional work is needed to construct a value
of a type that is an abstract class. In this case, if no
inherited classes are available, an inherited class is gen-
erated automatically. Here, all the abstract (pure vir-
tual) methods are defined in the simplest fashion, and
an object of this generated class is used as the value of
the required type.

2.4. An Example of Test Generation Using Azov

In this section, we illustrate the test generation pro-
cedure according to the Azov technology using the
screen saver functions from the Xlib library as an exam-
ple (Xlib is a part of LSB).

This library includes five screen saver functions.
•

int XSetScreenSaver(Display*, int,
int, int, int)

 sets the mode of the screen saver
operation for the specified display.

•

int XGetScreenSaver(Display*, int*,
int*, int*, int*)

 returns the current parameters
of the screen saver for the specified display. The param-
eters are returned as pointers corresponding to the
parameters of the preceding function.

•

int XForceScreenSaver(Display*, int)

activates or deactivates the screen saver for the speci-
fied display depending on the value of the second
parameter.

•

int XActivateScreenSaver(Display*,
int)

 activates the screen saver for the specified dis-
play.

•

int XResetScreenSaver(Display*)

 deacti-
vates the screen saver for the specified display.

The Xlib documentation gives the following details
for the interface.

• The second and the third parameters of

XSetScreenSaver()

 are time intervals in seconds
determining the screen saver operation. One may define
the type

TimeIntervalInSeconds

 for these param-
eters and define for it a correct value 1. The second and
the third parameters of

XGetScreenSaver()

 are
pointers to values of the same type.

• The fourth and the fifth parameters of

XSetScreenSaver()

, as well as the second parame-
ter of

XForceScreenSaver()

 are enumerated types
defining feasible modes of operation or activation
(deactivation) of the screen saver. For them, we can
define, respectively, the types

BlankingMode,
ExposuresMode

, and

ForceMode

. The correct values
for them are clearly indicated in the standard; they are,
respectively, {

DontPreferBlanking

,

Prefer-
Blanking

,

DefaultBlanking

}, {

DontAllowEx-
posures

,

AllowExposures

,

DefaultExposures

},
and {

Active

,

Reset

}. The fourth and the fifth param-
eters of

XGetScreenSaver()

 are pointers to values of
the types

BlankingMode

 and

ExposuresMode

.
• All the functions return a code, which may indicate

problems occurred while the operation was executed. In
this case,

BadValue

 is returned. In the normal opera-
tion mode, the result type can be refined by naming it

XScreenSaveResult

 and defining the distinction
from

BadValue

 as the base constraint for its values.
An analysis of the possible ways of obtaining a

value of the type

Display*

 yields the following
results.

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 34

No. 6

2008

AUTOMATION OF BROAD SANITY TEST GENERATION 355

• There are 18 functions in LSB that return a value
of the type

Display*

 and two functions that return a
reference to a value of this type; this reference can be
used to construct a desired pointer.

Among these functions, six are within Xlib; these
are

XDisplayOfIM()

,

XDisplayOfOM()

,

XDis-
playOfScreen()

,

XOpenDisplay()

,

XcmsDis-
playOfCCC()

, and

XkbOpenDisplay()

. The other
functions are in other libraries—X Toolkit, GTK,
OpenGL and Qt. For simple tests, it is preferable to use
functions from one library; for that reason, we further
analyze only the six functions indicated above.

• Four functions from the six ones listed above can-
not be used because they indirectly require that a value
of type

Display*

 be already available. For example,

XDisplayOfIM()

 has a parameter of the type

XIM,
which can only be obtained using one of the two func-
tions XOpenIM() or XIMOfIC(). The first one
requires Display* at its input, and the second function
requires XIC, which, in turn, can be created only using
the function XCreateIC(), which again requires a
value of the type XIM. XDisplayOfScreen()
requires a parameter of the type Screen*, which, in
Xlib, can be obtained only via XDefault-
ScreenOfDisplay() and XScreenOfDisplay();
however, both of them require a parameter of the type
Display*.

There is no description of XkbOpenDisplay() in
Xlib documentation.

Thus, we have only the function XOpenDisplay()
at our disposal because it requires only the parameter of
the type const char*, which can be NULL in normal
calls of this function.

Therefore, tests for the functions considered above
are constructed as follows.

• The value of Display* is obtained by invoking
the function XOpenDisplay() with the parameter
NULL.

• Time intervals are always assigned the value 1.

• The specialized types BlankingMode, Expo-
suresMode, and ForceMode are assigned the values
of DontPreferBlanking, DontAllowExposures,
and Active, respectively.

• The results returned by all the functions are
checked for equality to BadValue. If the equality is
detected, a bug is reported.

• In addition, the validity of the results returned by
reference from XGetScreenSaver() in its fourth and
fifth parameters can be checked by comparing them to
the feasible values of the specialized enumeration types
BlankingMode and ExposuresMode.

Figure 2 shows the scheme of obtaining parameter
values and constraints on the results for the functions in
the example considered above (the specialized type
ExposuresMode is omitted along with pointers to its
values and links between both types).

This example also shows that the main source for
improving the performance of test development is the
wide reuse of specialized types. After refining the
parameter type of the function XOpenDisplay(), we
can obtain values of the type Display* required for
many functions in Xlib. In this example, there are few
functions, and the number of different parameters in
them is large; therefore, no improvement in the test
generation performance is achieved. However, if the
number of functions using the same types of parameters
is large, a significant improvement in performance can
be obtained.

2.5. Supporting Tools

The work by the proposed technology is supported
by the following tools:

• A database containing augmented information
about the operations under test.

• A tool for editing information in the database (Web
interface); the editor makes it possible to add informa-
tion to the additional tables in the database, execute
queries to find data, and navigate through the tables by

Use of specialized types

Number Original types

Maximal number of a specialized type uses 513 bool (specialized type for para-
meters taking the value true)

Number of specialized types used 400 or more times 3 bool, int

200–399 times 5 bool, int, char*, QWidget*

100–199 times 16 –

10–99 times 225 –

2–9 times 556 –

Total number of specialized types 1665 –

Number of uses of specialized types as types of parameters or object calls 11503 –

Number of uses of all types as types of parameters or object calls 22757 –

356

PROGRAMMING AND COMPUTER SOFTWARE Vol. 34 No. 6 2008

ZYBIN et al.

references. In particular, it enables one to find all the
specialized types refining a given data type thus helping
developers to reuse available specialized types.

• Test generator that produces tests on the basis of
the information in the database using the procedure
described in Section 2.3.

The schema of the main tables of the database used
to store the original and additional information about
the operations under test is shown in Fig. 3.

In this figure, the tables of the original database are
shown by rectangles with thin borders, and the addi-
tional tables containing the refining information are
shown by rectangles with thick borders. The names of
the tables containing the refining information begin
with the prefix TG (Test Generation).

We use the following information from the original
database: information about the operations under test,
the types of their parameters and results. The informa-
tion about types and operations includes their names,
descriptors (public, protected, or static), the
sort of type (prime type, enumeration, class, structure,
union, template, template instance, pointer, and so on),
base type for pointers, references, and other derived
types.

3. PRACTICAL USE OF THE PROPOSED
TECHNOLOGY

The Azov technology was used to generate sanity
tests for the Qt library (version 3) [9] included in LSB
[3]; that library was designed for developing portable
applications with a graphical user interface.

LSB includes 10873 public and protected
methods (which are available for testing), constructors,
and destructors in the Qt 3 library. The information
about them (as well as the information about all the
operations in this standard) is publicly available (see
[10]).

However, some data required for generating correct
tests (for example, signatures of pure virtual methods of
classes) is not presented in the database. This informa-
tion was added using the refining procedure.

The operations were classified into groups accord-
ing to the classes in which they are defined. Since Qt
contains many classes (about 400), they were also
divided into several groups according to their main
functions.

In the refining procedure, 1665 specialized types
were defined, and initialization and finalization proce-
dures were added for 36 operations. Some data con-
cerning the use of specialized types are presented in the
table. About a half of the specialized types were used
two or more times, and some of them were used very

Database containing

 Classifying operations

 Refining information

Refinement quality

Test generation

Test execution

Analysis of

information about
the interfaces of

the system under test

Documentation

 into functional groups

about operation

verification

testing results

Database containing
the refined
information

Sanity tests

Testing reports

Fig. 1. Scheme of the works performed according to the Azov technology.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 34 No. 6 2008

AUTOMATION OF BROAD SANITY TEST GENERATION 357

often. The table also demonstrates that, in about 50% of
cases, the parameters and call objects are generated
automatically without the use of explicitly specified
values.

The test generation for Qt together with the develop-
ment of the tools supporting the Azov technology took
about four months and involved three developers.
At the first stage of the project, considerable effort was
devoted to the development and debugging of the tools.
At the final stage, when the tools became mature, each

developer produced tests for 80–100 functions each day
taking into account the time needed to analyze the doc-
umentation, refine data, generate, compile, and debug
the resulting tests. This is much more than 3–8 func-
tions that can be processed in a day using the conven-
tional manual test construction procedures. The reasons
for such an improvement in performance are the reuse
of specialized types and tool support.

As a result, test suites for 10803 functions and meth-
ods out of 10873 were generated. Only 70 methods

int XSetScreenSaver (Display* int int int int)

TimeIntervalInSeconds*

values:

— specialized types

TimeIntervalInSeconds

int XGetScreenSaver (Display* int* int* int* int*)

int XForceScreenSaver (Display* int)

int XActivateScreenSaver (Display*)

int XResetScreenSaver (Display*)

1

pointer

BlankingMode

enumeration
values:

DontPreferBlanking
PreferBlanking
DefaultBlanking

pointer

BlankingMode*

ForceMode

XDisplayID

XScreenSaverResult
Display*

Display*)

enumeration
values:

Active
Reset

values:
NULL

@:
|= BadValue

XDisplayID

Display*

XOpenDisplay(const char*

— base types

— getting values of a base type

— getting values of a specialized type

Fig. 2. Scheme for obtaining parameter values and constraints on the results for screen saver functions (the type ExposuresMode is
not shown).

358

PROGRAMMING AND COMPUTER SOFTWARE Vol. 34 No. 6 2008

ZYBIN et al.

(0.6%) were not covered for various reasons such as the
absence of documentation, accidental membership of
internal methods of the library in the standard, impos-
sibility to call a method in C++, and so on.

The execution of the resulting tests for one of the
implementations of Qt 3 helped detect about ten vari-
ous bugs in the implementation although all the tests
check only the simplest scenarios of using methods.

The successful application of the Azov technology
in this project shows that it provides a proper tool for
rapid sanity test generation for large industrial soft-
ware.

Presently, we are working on generating tests for the
Qt 4 library [2] and plan to use it for testing some other
libraries in LSB that lack test suites.

4. COMPARISON WITH OTHER APPROACHES
TO AUTOMATED TEST GENERATION

The main goal in the development of Azov was the
generation of large test suites for large software sys-
tems, and the use of automated test generation in the
framework of this technology is a necessary require-
ment. For that reason, in the review below we consider
only the methods in which the test data, the sequences
of test inputs, or both elements are generated automati-
cally on the basis of certain information. Moreover, the
technology proposed in this paper is designed for test-
ing APIs, and it is reasonable to compare it with the
approaches designed for the same purpose; indeed, test
generation for other types of interfaces (GUI, message
passing, event-driven interface, and so on) has specific
features.

Interface

Iid
Iname
Ireturn
Iclass
Ikind

Type

Tid
Tname
Tbasetype
Tkind

Parameter

Pint
Ppos
Ptype

TGInterface

TGIid
TGIspecreturn
TGIspecobjecttype

TGInterfaceSupplement

TGISint
TGISpreamble
TGISfinalization

TGSpecTYpeValue

TGSTVid
TGSTVspectype
TGSTVvalue

TGParameterProxy

TGPPid
TGPPspectype
TGPPvalue

TGSpecType

TGSTid
TGSTname
TGSTtype
TGSTbasetype
TGSTcode

TGSpecTypeConstraint

TGSTGid
TGSTCspectype
TGSTCkind
TGSTCcode

TGParameter

0, 1

0, 1

0, N

0, N

0, N

1, 1 1, 1

0, N

0, N

0, N

0, 1

1, 1

0, N

1, 1

1, 1

0, 1 1, 1

1, 1

0, 1

1, 1

1, 1 1, 1

0, N 0, N0, N0, 1

0, 1

0, 1 0, N

0, N

0, N 0, 1

varchar

key
varchar
key
enum

key
int
key

TGPint
TGPpos
TGProxy

key
int
key

key
key
key

key
text
text

key
varchar
key
key
text

key
key
varchar

key
key
enum
text

key
key
varchar

Fig. 3. Main tables of the database storing information about the operations under test.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 34 No. 6 2008

AUTOMATION OF BROAD SANITY TEST GENERATION 359

The methods for automated test generation
described in the literature can be divided into the fol-
lowing classes.

• Test generation methods based on covering arrays.
These methods are based on the combinatorial
approach. Each test case is a combination of values of
several parameters or factors, and each factor can take
a finite number of values. The test suite is generated so
as to use all possible combinations of pairs, triples, and
so of factor values in a minimal number of test cases.
This problem is equivalent to constructing a combina-
torial scheme—a covering array with certain parame-
ters. A fairly complete review of the techniques used to
construct covering arrays and their use in testing can be
found in [11, 12]. The majority of the available tools
based on such techniques is presented at site [13].
Among them, AETG [14, 15], TestCover [16, 17], All-
Pairs [18], Jenny [19], Intelligent Test Case Handler
[20], and PICT [21] are most popular. The first two sys-
tems are more mature than the others: they have wide
configuration capabilities and enable one to obtain
slightly more compact test suites.

Such methods use for test generation only syntactic
information about the interface and user-defined finite
sets of parameter values. No verification of the results
is performed; it is assumed that the results will be
checked by people manually or using special tools.

Such methods do not suite well for sanity testing
because only one test case is needed for each operation,
and covering arrays are useless in the generation of
such a test case.

• Test data generation methods based on modeling
data structures and gradual construction of complex
objects from values of simple types. These methods use
a description of the data structure in a certain notation
for generating test data having the specified structure.
The data of simple types (numbers, characters, strings,
dates, and so on) are either selected from certain pre-
liminary specified sets or generated using simple (often
random-based) algorithms. Next, various combining
strategies are used to form more and more complex
objects. Such methods can take into account simple
constraints on the values of one or several elements, for
example, that the values of certain fields must be iden-
tical. Partial or total filtering can be used to satisfy the
constraints (data are generated and then the results that
do not satisfy the constraints are eliminated). However,
this approach becomes inefficient when the complexity
of constraints grows. In this case, the methods belong-
ing to the next group are used.

There are quite a few products that implement meth-
ods of this type. Most of them can produce results in a
certain predefined format; they fill a relational data-
base, XML documents, or generate texts in the lan-
guage specified by a grammar. The vast majority of
products that work with databases are commercial (see
[22–26]). Also, there are a few research products that

can take into account the structure of an application’s
queries along with the structure of the database. XML
generators are mainly research projects or are distrib-
uted freely (see [30–34]). The first works in the field of
complex data generation [35–37] dealt with the gener-
ation of data satisfying a certain grammar. Some more
modern tools (see [38, 39]) continue this line of prod-
ucts. There are also some tools and frameworks for
developing test data generators that can produce data in
different formats. Examples of such tools are OTK [40]
and Pinery [41] developed in the Institute for System
Programming, Russian Academy of Sciences.

Such methods require that the data structure be
described in a certain formal form (BNF, DDL, DTD,
XML Schema, Relax NG, and the like) and that con-
straints on the size and structure of the generated
objects be specified. The verification of results obtained
by executing tests is usually performed manually or
using other tools.

Such tools can be used to generate sanity tests if the
interface operations of the system under test have fairly
complex objects as their inputs.

In the Azov technology, we also use such a tech-
nique for generating objects of complex types; how-
ever, the preferred method for generating complex
objects is the use of constructors or other operations of
the system under test that return objects of the required
type. In many cases, this allows one not to care about
the correctness of the constructed object when its com-
ponents must satisfy some specific conditions.

• Methods for generating test data based on con-
straint solving techniques. Under this approach, the
constraints imposed on the elements of the test data are
resolved without filtering. As a result, a correct array of
data for one call of a function under test is produced.

Such test generation methods are used in structural
and in functional testing. In both cases, constraints pro-
vide conditions of reaching a particular situation; in the
structural case, it is described in terms of the structure
of the code under test and, in the functional case, it is
described in terms of the functionality to be checked.

The techniques used to solve constraints may be
very different from each other. For example, they can
directly solve systems of constraints, use logical pro-
gramming [42], use symbolic program execution [43],
search through randomly generated data to find data
satisfying the constraints [44, 45], and so on.

There are several commercial products among the
tools using this approach [46–48]. The most well-
known products JTest, C++Test, and .TEST belong to
the Parasoft company [46]. They use both the structure
of data and the structure of the code of the methods
under test to generate test cases. The verification of test-
ing results is performed on the basis of the precondi-
tions and postconditions of methods and invariants of
data types that were specified by the user in the source

360

PROGRAMMING AND COMPUTER SOFTWARE Vol. 34 No. 6 2008

ZYBIN et al.

code in the form of comments. An exception while exe-
cuting a test is classified as a bug. T-VEC [47] uses
operation postconditions both for checks performed
during testing and as a source for test data classification
and further generation of class representatives. In
SureSoft [48], test generation is performed on the basis
of the code structure, and the correctness of the results
is evaluated by detecting exceptions and gross failures
of the program under test. The research projects
TestEra [49] and Korat [50] use the user provided
invariants and a constraint solving technique for gener-
ating objects of complex types in various states. In prin-
ciple, such approaches can be used for sanity test gen-
eration; however, they are very inefficient in this case.
Methods for structural test generation cannot be used
for requirements-based sanity testing, and the formal-
ization of requirements that is needed for the applica-
tion of the available tools is too labor-consuming.

• Dynamic generation methods for structural tests.
The term dynamic test generation is used to denote the
methods in which objects and values created in the pro-
gram in the course of testing are used for generating
new tests [51]. The generation is aimed at covering cer-
tain situations and program states; for this purpose,
search methods are used, such as genetic algorithms
[52, 53] or hill climbing [54, 55].

The tests produced using such techniques are
sequences of method calls rather than individual calls.
This makes it possible to check the system operation in
many states while using objects in various states as
parameters.

The Azov technology makes intensive use of the
dynamic test generation by constructing chains of calls
that ensure the normal work of the operations under
test. In the recent 5–7 years, quite a few research prod-
ucts of this type have appeared. Many of them can be
applied to fairly large commercial systems. Since these
tools often use a complex combination of various tech-
niques for the analysis of the program under test and for
test generation, they can be called synthetic.

� JCrasher [56], Check-n-Crash [57], and DSD-
Crasher [58, 59] were developed in the University of
Oregon. JCrasher, which appeared first in this group,
generates test suites for Java programs using random
data of simple types, several heuristics for aiming at
probable bugs, operations' syntax, and data structures.
The verification is reduced to registering exceptions
and gross failures. In Check-n-Crash, the first stage for
the syntactic analysis of the code of operations under
test was added, which is performed using ESC/Java
[60]. At this stage, sets of constraints are obtained cor-
responding to various paths. These constraints are
solved partially using direct methods and partially by
slight modifications of random tests. DSDCrashher
adds one more preliminary phase at which the program
under test is executed on a set of random scenarios, and
then the Daikon system [61] is used to reveal possible

invariants of the program. These invariants are then
used to remove incorrect testing scenarios that result in
an error due to the incorrect use of the program rather
than due to bugs in the program itself.

� AutoTest [62] uses the same techniques as
JCrasher for generating tests for programs written in
Eiffel. However, in addition to exceptions, user-defined
invariants and postconditions are used to verify the
results.

� Elcat [63] and Randoop [64] developed in MIT use
random generation in combination with methods for
reducing the set of states to be analyzed and some heu-
ristics for getting into new situations (in Randoop, long
sequences of calls of the same methods appearing with
a certain probability are used). Also, Elcat can use
Daikon to reject incorrect testing scenarios. Randoop
was used to generate tests for large libraries (parts of
the JDK and .NET with the size of about 700 thousands
of code lines); it demonstrated the ability to produce
test suites that can detect serious bugs.

� In Rostra [65] and Symstra [66], symbolic pro-
gram execution is used to detect constraints on the input
data that can lead to possibly incorrect behavior and to
search through possible states. Another example of
using symbolic execution is test generation in Java Path
Finder [67], which can simulate the work of a Java
machine. The parallel symbolic execution and the exe-
cution on concrete data corresponding to symbolic con-
straints are used in CUTE and jCUTE [68]. The random
test generation directed by bug detecting heuristics and
by reducing the space of states due to symbolic execu-
tion is used in DART [69] and Unit Meister [70].

Such approaches can be used for the sanity test gen-
eration; however, the resulting test can be used only for
the code of one particular software product.

• Test generation methods based on formal models.
These methods are based on the use of a formal model
of the software behavior. Most often, such a model is a
finite state machine (FSM) or a labeled transition sys-
tem (LTS). However, there are also methods based on
logical models of the software and on situations occur-
ring in the deductive analysis of those models (theorem
proving) [71, 72].

The test generation methods based on finite state
machines are classified into two groups:

� Methods based on covering the structure FSM
models.

� Methods using model checking for generating sce-
narios that bring the system under test into specific
states [76–79].

Such methods are inefficient in sanity test genera-
tion because they require the construction of a formal
model of the system’s behavior.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 34 No. 6 2008

AUTOMATION OF BROAD SANITY TEST GENERATION 361

5. CONCLUSIONS

Test generation automation is usually based on the
formalization of a large number of rules and criteria
that are informally used for manual test generation.
Such automation is labor consuming, but it pays off due
to the completeness and quality of the resulting test
suites. However, one can automate the generation of
much less accurate tests that check only the basic oper-
ability of a system at a much lower cost.

In this paper, the Azov technology for the broad gen-
eration of sanity tests developed in the Institute for Sys-
tem Programming (Russian Academy of Sciences) was
described. It is based on refining information about the
parameter and result types of the interface operations of
the system under test and on using this information for
test data generation. The technology is useful for sys-
tems that have a fairly rich interface (more than 500
operations), documentation describing the basic func-
tionality of those operations, and a database containing
well-structured information about the operations. Note
that any compiler is able, in principle, to create such a
database.

The proposed Azov technology was used to generate
tests for the library Qt, which includes more than 10000
operations. It was demonstrated that this technology
can be efficiently used for sanity testing of large sys-
tems. Although the tools supporting this technology
were developed simultaneously with the test project
execution, high test development performance was
achieved.

REFERENCES
1. IEEE 1003.1-2004. Information Technology—Portable

Operating System Interface (POSIX), New York: IEEE,
2004.

2. http://doc.trolltech.com/4.2/index.html.
3. http://www.linuxbase.org.
4. ISO/IEC 9899-1999. Programming Languages—C,

Geneva: ISO, 1999.
5. http://www.pathname.com/fhs/.
6. XLib—C Language X Interface. X Consortium Standard,

http://refspecs.freestandards.org/X11/xlib.pdf.
7. http://www.opengl.org.
8. http://www.gtk.org.
9. http://doc.trolltech.com/3.3/index.html.

10. http://www.linux-foundation.org/navigator/commons/wel-
come.php.

11. Colbourn, C.J., Combinatorial Aspects of Covering
Arrays, Le Mathemetiche (Catania), 2004, vol. 58,
pp. 121–167.

12. Hartman, A. and Raskin, L. Problems and Algorithms for
Covering Arrays, Discrete Math., 2004, vol. 284, nos. 1–
3, pp. 149–156.

13. http://www.pairwise.org/tools.asp.
14. http://aetgweb.argreenhous.com.

15. Cohen, D.M., Dala, S.R., Kajla, A., and Patton, G.C.,
The Automatic Efficient Test Generator (AETG), Sys-
tem. Proc. of the 5th Int. Symposium on Software Reli-
ability Engineering (ISSRE), Monterey, Calif., 1994.

16. http://www.testcover.com.
17. Sherwood, G., Effective Testing of Factor Combinations,

Proc. of the 3rd Int. Conf. on Software Testing, Analysis,
and Review, Washington, 1994.

18. http://www.satisfice.com/tools.shtml.
19. http://burtleburtle.net/bob/math/jenny.html.
20. http://alphaworks.imb.com/tech/whitch.
21. http://download.microsoft.com/download/f/5/5/f5548df

-8494-48fa-8dbd-8c6f76cc014b/pict33.msi.
22. http://www.turbodata.ca/.
23. http://www.sqlmanager.net/products.
24. http://www.sqledit.com/dg/.
25. http://www.dataect.com/.
26. http://www.forsql.com.
27. Chays, D., Deng, Y., Frankl, P.G., Dan, S., Vokolos, F.I.,

and Weyuker, E.J., AGENDA: A Test Generator for
Relational Database Applications, Tech. Report of the
Polytechnic University, Brooklin, New York TR-CIS-
2002-04, 2004.

28. Binning, C., Kossmann, D., and Lo, E., Testing Database
Applications, Proc. of the ACM SIGMOD Int. Confer-
ence, Chicago, ACM, 2006, pp. 739–741.

29. Bruno, N., Chaudhuri, S., Flexible Database Generators,
Proc. of the 31st Int. Conf. on very Large Databases,
Trondheim, Norway, 2005, pp. 1097–1107.

30. Barbosa, D. and Mendelzon, A., Declarative Generation
of Synthetic XML Data, Software: Practice & Experi-
ence, 2006, vol. 36, no. 10, pp. 1051–1079.

31. Lämmel, R. and Schulte, W., Controllable Combinato-
rial Coverage in Grammar-Based Testing, Proc. of
TESTCOM'2006, Lect. Notes Comput. Sci., 2006,
vol. 3964, 2006, pp. 19–38.

32. http://www.alphaworks.imb.com/tech/xmplgenerator.
33. http://xml-xig.sourceforge.net.
34. http://iwm.uni-koblenz.de/datagen/.
35. Purdom, P., A Sentence Generator for Testing Parsers,

BIT, 1972, vol. 12, no. 3, pp. 366–375.
36. Celentano, A., Crespi, Rghezzi, S., Della Vigna, P.,

Ghezzi, C., Granata, G., and Savoretti, F., Compiler Test-
ing Using a Sentence Generator, Software: Practice &
Experience, 1980, vol. 10, pp. 897–918.

37. Maurer, P., Generating Test Data with Enhanced Con-
text-Free Grammars, IEEE Software, 1990, vol. 7, no. 4,
pp. 50–56.

38. Zelenov, S.V. and Zelenova, S.A., Generation of Positive
and Negative Tests for Parsers, Programmirovanie,
2005, vol. 31, no. 6, pp. 25–40 [Programming Comput.
Software (Engl. Transl.), 2005, vol. 31, pp. 310–320].

39. http://www..mmsindia.com/JSynTest.html.
40. Zelenov, S.V., Zelenova, S.A., Kossatchev, A.S., and

Petrenko, A.K., Test Generation for Compilers and Other
Formal Text Processors, Programmirovanie, 2003,
vol. 29, no. 2,.pp. 104–111 [Programming Comput. Soft-
ware (Engl. Transl.), 2003, vol. 29, no. 2, pp. 104–111].

362

PROGRAMMING AND COMPUTER SOFTWARE Vol. 34 No. 6 2008

ZYBIN et al.

41. Demakov, A.V., Zelenov, S.V., and Zelenova, S.A., Gen-
eration of Complex Structure Test Data with Account of
Context Constraints, Trudy ISP RAN, 2006, vol. 9,
pp. 83–96.

42. Gotlieb, A., Botella, B., and Rueher, M., Automatic Test
Data Generation Using Constraint Solving Techniques,
ACM SIGSOFT Software Eng. Notes, 1998, vol. 23,
no. 2, pp. 53–62.

43. DeMillo, R.A. and Offut, A.J., Constraint-Based Auto-
matic Test Data Generation, IEEE Trans. Software Eng.,
1991, vol. 17, no. 9, pp. 900–910.

44. Korel, B., Automated Software Test Data Generation,
IEEE Trans. Software Eng., 1990, vol. 16, no. 8,
pp. 870–879.

45. Gupta, N., Mathur, A.P., and Soffa, M.L., Automated
Test Data Generation Using an Iterative Relaxation
Method, ACM SIGSOFT Software Eng. Notes, 1998,
vol. 23, no. 6, pp. 231–244.

46. http://www.parasoft.com/jsp/products.jsp.
47. http://www.t-vec.com/solutions/tvec.php.
48. http://www.suresofttech.com/eng/main/product/api.asp.
49. Marinov, D. and Khurshid, S., TestEra: A Novel Frame-

work for Automated Testing of Java Programs, Proc. of
the 16th IEEE Int. Conf. on Automated Software Engi-
neering, 2001, pp. 22–31.

50. Boyapati, C., Khurshid, S., and Marinov, D., Korat:
Automated Testing Based on Java Predicates, Proc. of
Int. Symposium on Software Testing and Analysis, Rome,
2002, pp. 123–133.

51. Korel, B., A Dynamic Approach of Automated Test Data
Generation, Proc. of Conf. on Software Maintenance,
San Diego, 1990, pp. 311–317.

52. Pargas, R.P., Harrold, M.J., and Peck, R., Test-Data Gen-
eration Using Genetic Algorithms, Software Testing,
Verification & Reliability, 1999, vol. 9, no. 4, pp. 263–
282.

53. Seesing, A. and Gross, H.-G. A Genetic Programming
Approach to Automated Test Generation for Object-Ori-
ented Software, Int. Trans. Syst. Sci. Appl., 2006, vol. 1,
no. 2, pp. 127–134.

54. Korel, B., Automated Test Data Generation for Programs
with Procedures, Proc. of ISSSTA, 1996, pp. 209–215.

55. Ferguson, R. and Korel, B., The Chaining Approach for
Software Test Data Generation, ACM Trans. Software
Eng. Methodology, 1996, vol. 5, no. 1, pp. 63–86.

56. Csallner, C. and Smaragdakis, Y., JCrasher and Auto-
matic Robustness Tester for Java, Software: Practice &
Experience, 2004, vol. 34, no. 11, pp. 1025–1050.

57. Csallner, C. and Smaragdakis, Y., Check ‘n’ Crash:
Combining Static Checking and Testing, Proc. of the
27th Int. Conf. on Software Engineering (ICSE), ACM,
2005, pp. 422–431.

58. Csallner, C. and Smaragdakis, Y., DSD-Crasher: A
Hybrid Analysis Tool fo Bug Finding, Proc. of the ACM
SIGSOFT Int. Symposium on Software Testing and Anal-
ysis (ISSTA), ACM, 2006, pp. 245–254.

59. Smaragdakis, Y. and Csallner, C., Combining Static and
Dynamic Reasoning for Bug Detection, Proc. of
TAP2007, Lect. Notes. Comput. Sci., 2007, vol. 4454,
pp. 1–16.

60. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nel-
son, G., Saxe, J.B., and Stata, R., Exrended Static
Checking for Java, Proc. of the ACM SIGPLAN Conf. on
Programming Language Design and Implementation,
2002, pp. 193–205.

61. Ernst, M.D., Cockrell, J., Griswold, W.G., and Not-
kin, D., Dynamically Discovering Likely Program
Invariants to Support Program Evolution, IEEE Trans.
Software Eng., 2001, vol. 27, no. 2, pp. 99–123.

62. Meyer, B., Ciupa, I., Leitner, A., and Liu, L., Automatic
Testing of Object-Oriented Software, Proc. of the 33rd.
Conf. on Current Trends in the Theory and Practice of
Computer Science (SOFSEM), Springer, 2007.

63. Pacheco, C. and Ernst, M.D., Eclat: Automatic Genera-
tion and Classification of Test Inputs, Proc. of ECOOP,
2005, pp. 504–527.

64. Pacheco, C., Lahiri, S.K., Ernst, M.D., and Ball, T.,
Feedback-Directed Random Test Generation, Proc. of
ICSE, 2007, pp. 75–84.

65. Xie, T., Marinov, D., and Notkin, D., Rostra: A Frame-
work for Detecting Redundant Object-Oriented Unit
Tests, Proc. of the 19th IEEE Int. Conf. on Automated
Software Engineering (ASE 2004), Linz, Austria, 2004,
pp. 196–205.

66. Xie, T., Marinov, D., Schulte, W., and Notkin, D., Sym-
stra: A Framework for Generating Object-Oriented Unit
Tests Using Symbolic Execution, Proc. of the 11th Int.
Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2005), Edinburgh, 2005,
pp. 365–381.

67. Artho, C., Barringer, H., Goldberg, A., Havelund, K.,
Kurshid, S., Lowry, M., Pasareanu, C., Rosu, G., Sen, K.,
Visser, W., and Washington, R., Combining Test Case
Generation and Runtime Verification, Theor. Comput.
Sci., 2005, vol. 366, nos. 2–3, pp. 209–234.

68. Sen, K. and Agha, G., CUTE and jCUTE: Concolic Unit
Testing and Explicit Path Model-Checking Tools, Proc.
of Computer Aided Verification, 2006, pp. 419–423.

69. Godefroid, P., Klarlund, N., and Sen, K., DART:
Directed Automated Random Testing, Proc. of the ACM
SIGPLAN Conf. on Programming Language Design and
Implementation, Chicago, 2005, pp. 213–223.

70. Tillmann, N. and Schulte, W., Parameterized Unit Tests
with Unit Meister, ACM SIGSOFT Software Eng. Notes,
2005, vol. 30, no. 5, pp. 241–244.

71. Yorsh, G., Ball, T., and Sagiv, M., Testing, Abstraction,
Theorem Proving: Better Together, Proc. of the Int. Sym-
posium on Software Testing and Analysis, Portland,
Maine, 2006, ACM, 2006, pp. 145–156.

72. Brucker, A.D. and Wolf, B. Interactive Testing with
HOL-TestGen, Proc. of FATES, 2006, Lect. Notes Com-
put. Sci., 2006, vol. 3997, pp. 87–102.

73. Harman, A. Model-Based Test Generation Tools, 2002,
http://www.agedis.de/documents/Model-BasedTestGene
rationTools.pdf.

74. Model-Based Testing of Reactive Systems: Advanced
Lectures, Broy, M., Jonsson, B., Katoen, J.-P.,
Leucker, M., and Pretschner, A. (eds.), Lect. Notes Com-
put. Sci., 2005, vol. 3472.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 34 No. 6 2008

AUTOMATION OF BROAD SANITY TEST GENERATION 363

75. Kuliamin, V.V., Petrenko, A.K., Kossatchev, A.S., and
Bourdonov, I.B., The UniTesK Approach to Designing
Test Suites, Programmirovanie, 2003, no. 6, pp. 25-43
[Programming Comput. Software (Engl. Transl.), 2003,
vol. 29, no. 6, pp. 310–322].

76. Ammann, P. and Black, P.E., Abstracting Formal Speci-
fications to Generate Software Tests via Model Check-
ing, NIST-IR 6405 (extended version), 1999.

77. Gargantini, A. and Heitmeyer, C., Using Model Check-
ing to Generate Test Form Requirements Specifications,
Proc. of the Joint 7th European Software Engineering
Conference and the 7th ACM SIGSOFT Int. Symposium

on Foundations of Software Engineering (ESEC/FSE99),
Toulouse, 1999.

78. Devaraj, G., Heimdahl, M.P.E., and Liang, D., Cover-
age-Directed Test Generation with Model Checkers:
Challenges and Opportunities, Proc. of the 29th Annual
Int. Computer Software and Applications Conference
(COMPSAC'05), 2005, Vol. 1, pp. 455–462.

79. Beyer, D., Henzinger, T.A., Jhala, R., and Majumdar, R.,
The Software Model Checker Blast: Applications to
Software Engineering, Int. J. Software Tools Technol.
Transfer, 2007, vol. 9, nos. 5–6, pp. 505–525.

SPELL: OK

