
ISSN 0361�7688, Programming and Computer Software, 2010, Vol. 36, No. 5, pp. 289–305. © Pleiades Publishing, Ltd., 2010.
Original Russian Text © V.V. Kuliamin, 2010, published in Programmirovanie, 2010, Vol. 36, No. 5.

289

1. INTRODUCTION

The growth of the number and variety of problems
currently solved by computer systems leads to perma�
nent complication of both the systems and all activities
associated with their construction and maintenance.
The problems related to complexity growth are dealt
with component�based technologies of computering
systems construction of [1, 2], which have been
actively developed during last decades.

In the framework of these technologies, systems are
built from independent components, each of which
solves a specific set of tasks and interacts with the envi�
ronment via a specified interface, i.e., is a module.
Besides, component�based software technologies
facilitate integration of components, automatically
linking and running components (quite often, on�the�
fly, without interruption of system operation) placed
in binary form in the context of certain technological
infrastructure (component environment). As a result,
components can be created and supported by inde�
pendent developers, which reduces cost of develop�
ment and maintenance of complex systems.

Component�based technologies made it possible to
considerably increase complexity of systems being
developed; however, the development of these tech�
nologies was not accompanied by the corresponding
progress in the quality control of software. As a result,
ensuring quality of component systems (including
check of correctness of their operation) becomes more
complicated as complexity and importance of prob�
lems being solved grows.

The source of these difficulties is extremely high
effort required for checking correctness of the system,
given that the number of possible scenarios of compo�

nent interaction and the number of implicit depen�
dences between them nonlinearly depend on the num�
ber of the components. In turn, the causes of these dif�
ficulties are as follows.

• Present practice of incomplete and inaccurate
description of interfaces between the components gives
rise to appearance of many implicit dependences
between them. According to D. Parnas [3], one of the
founders of the modular approach, complete interface
of a module should specify not only its syntactic struc�
ture (names of operations, types of their parameters
and results) but also its semantics (rules of operation
use and expected module behavior). In practice, only
syntax is usually fixed; semantics is described partially
and ambiguously and only for system interfaces the
incorrect use of which is associated with high risks.
However, the number of “less risky” interfaces, the
semantics of which is not described at all, is much
greater, and the total cost of errors in their operation is
quite high [4].

• Difficulties associated with integration of verifi�
cation tools into software development processes. Such
tools are mainly “all�in�one” tools or integrated solu�
tions with a great number of functions. The set of
activities aimed at controlling software quality, rela�
tionships between them, and supported verification
techniques are predetermined by the tool designers
and cannot be considerably modified or extended.
However, processes of software development in differ�
ent organizations differ considerably; therefore, there
is a need in modular development tools that can easily
be integrated with other tools and be supplemented
with new modules implementing modern techniques
of software development and analysis. Complex sys�

Component Architecture
of Model�Based Testing Environment

V. V. Kuliamin
Institute for System Programming, Russian Academy of Sciences,

ul. Solzhenitsyna 25, Moscow, 109004 Russia
e�mail: kuliamin@ispras.ru

Received January 21, 2010

Abstract—In the paper, an approach to constructing architecture of tools for model�based testing that rely
on modern component�based technologies is presented. One of the basic ideas underlying this approach con�
sists in application of noninvasive composition techniques, which make it possible to integrate a set of inde�
pendently developed components into a complex system and reconfigure it without modifying codes of the
components. The approach suggested in the paper is one of the first applications of the component�based
technologies to designing test systems. A prototype implementation of the suggested approach based on avail�
able libraries is described, and an example of its use for test construction is presented.

DOI: 10.1134/S036176881005004X

290

PROGRAMMING AND COMPUTER SOFTWARE Vol. 36 No. 5 2010

KULIAMIN

tem development tools should also be component ones
and should require minimum expenditures in order to
be included in various technological processes.
Among already existing verification tools, only unit
testing tools [8] (the most well�known example is
JUnit [6]) possess these properties. No modular sup�
port for more complicated kinds of verification or con�
formance testing is currently available.

• Weak support of reuse of quality control artifacts
(tests, verified statements, modules, etc.). This is espe�
cially important for component�based technologies,
where the cost of verification of one component is usu�
ally quite acceptable and, in the course of the verifica�
tion, many auxiliary artifacts are created, However,
there is no way to use these artifacts in the verification
of interacting components or for much more expen�
sive quality control of systems that include this com�
ponent under check. The reuse of such artifacts could
greatly reduce cost of verification of component�based
software.

The motivation for this work was our assurance that
systematic use of component�based technologies for
constructing verification systems will help us to over�
come difficulties associated with the gap between
complexity of modern systems and possibilities for
controlling their quality. A way out of the situation is to
create component�based technologies for the verifica�
tion of software and hardware systems, which ensure
independent quality control for separate components
in accordance with the requirements imposed on
them, and, then, use the artifacts obtained in the
course of the verification for more accurate control of
their integration and quality of the whole system,

gradually increasing the number of the components
and subsystems checked, as well as their complexity.
These technologies should extend the existing compo�
nent�based development technologies and make use
of elements the developers are familiar with.

Flexibility of a technology and possibility of its use
for solving various problems depend on the architec�
ture underlying it. For the component�based technol�
ogies, architecture is even more important, since it
directly determines rules of creating, developing, and
adding new components, their kinds, patterns of their
interactions, possible configurations, and so on.

One of the promising approaches to systematic
check of complex system correctness is model based
testing, which combines the rigor of formal methods
and accurate error detection with flexibility and prac�
ticality of ordinary testing.

In this work, some elements of a Java�based com�
ponent verification technology that uses model based
testing are presented. On the whole, the presented
technology is still under development. The main part
of the paper is devoted to its architecture framework,
which includes instrumental libraries and a collection
of basic component types and rules of their integra�
tion. Such component architecture for a model based
testing is used for the first time, although a number of
its elements were borrowed from most advanced unit
testing tools.

In the second section, a model based testing
approach, requirements it imposes on the architecture
of the supporting tools, and available implementations
of the approach are discussed. Next, principles of the

Dependency injection container

Configurator
Path

generator
Data

generator

Situation
model

Behavior
model

Test model Data
combinator

Adapter Situation
model

Trace generator Test spy Component
under test

Fig. 1. Test system construction scheme.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 36 No. 5 2010

COMPONENT ARCHITECTURE 291

public class AccountContract

{

int balance;

int maxCredit;

Account checkedObject;

public void setCheckedObject(Account checke-

dObject)

{

this.checkedObject = checkedObject;

this.balance = checkedObject.getBalance();

this.maxCredit = checkedObject.getMaxCredit();

}

public boolean possibleTransfer(int sum)

{

if (balance + sum > maxCredit) return true;

else return false;

}

public boolean transferPostcondition(int sum)

{

boolean permission =

checkedObject.getValidator().validateTransfer(checkedObject, sum);

if (Contract.oldBooleanValue(possibleTransfer(sum)) && permission)

return

Contract.assertEqualsInt(Contract.intResult(), sum

, “Result should be equal to the argument”)

&& Contract.assertEqualsInt(balance, Contract.oldIntValue(balance)+sum

, “Balance should be increased on the argument”)

&& Contract.assertEqualsInt(maxCredit, Contract.oldIntValue(maxCredit)

, “Max credit should not change”);

else

return

Contract.assertEqualsInt(Contract.intResult(), 0

, “Result should be 0”)

&& Contract.assertEqualsInt(balance, Contract.oldIntValue(balance)

, “Balance should not change”)

&& Contract.assertEqualsInt(maxCredit, Contract.oldIntValue(maxCredit)

, “Max credit should not change”);

}

public void transferUpdate(int sum)

{

if(possibleTransfer(sum)

&& checkedObject.getValidator().validateTransfer(checkedObject, sum))

balance += sum;

}

}

Fig. 2. Account basic functionality model.

292

PROGRAMMING AND COMPUTER SOFTWARE Vol. 36 No. 5 2010

KULIAMIN

public class AccountLogSpy

{
int balance;

int maxCredit;

Account checkedObject;

AuditLog logSpy;

public void setCheckedObject(Account checkedObject)

{

this.checkedObject = checkedObject;

this.balance = checkedObject.getBalance();

this.maxCredit = checkedObject.getMaxCredit();

logSpy = Mockito.spy(checkedObject.getLog());

checkedObject.setLog(logSpy);

}

int oldBalance;

boolean wasPossible;

public boolean possibleTransfer(int sum)

{

if (balance + sum > maxCredit) return true;

else return false;

}

public void initSpy(int sum)

{

Mockito.reset(logSpy);

oldBalance = balance;

}

public void transferLogSpy(int sum)

{

boolean permission =

checkedObject.getValidator().validateTransfer(checkedObject, sum);

if (wasPossible && permission)

{

Mockito.verify(logSpy).logKind(“SUCCESS”);

Mockito.verify(logSpy).logNewBalance(balance);

}

else if (!permission)

Mockito.verify(logSpy).logKind(“BANNED”);

else

Mockito.verify(logSpy).logKind(“IMPROPER”);

Mockito.verify(logSpy).logOldBalance(oldBalance);

Mockito.verify(logSpy).logSum(sum);

}

public void transferUpdate(int sum)

{

if(possibleTransfer(sum)

&& checkedObject.getValidator().validateTransfer(checkedObject, sum))

{

wasPossible = true;

balance += sum;

}

else

wasPossible = false;

}

}

PROGRAMMING AND COMPUTER SOFTWARE Vol. 36 No. 5 2010

COMPONENT ARCHITECTURE 293

component�based design are formulated, and basic
elements of the proposed architecture framework are
presented. Then, an example of test creation with its
help is given. The concluding section summarizes the
discussion and outlines directions of future develop�
ment of the ideas discussed.

2. MODEL BASED TESTING
AND TESTING TOOLS

Model based testing [7, 8] is an approach to testing
in the framework of which tests are constructed man�
ually, in an automated way, or completely automati�
cally on the basis of a behavior model of the system
under test and a model of situations associated with its
operation.

The behavior model formalizes requirements to the
system under test, i.e., describes what external actions
and in what situations are admissible and how the sys�
tem should react on these actions.

The behavior model is a basis for a test oracle [9–
11], a component that estimates system behavior in
the course of testing.

Most often, various automaton models—
(extended) finite�state machines, transition systems
[7], Statecharts [12, 13], timed automata [14, 15],
etc.—are used for testing. It is often possible to use
models of other kinds: contract specifications in the
form of pre� and postconditions of operations, alge�
braic specifications in the form of equivalence rules for
various chains of operation calls, or trace models
describing possible sequences of actions and system
reactions.

The situation model formalizes structure of possible
test situations components of which are external
actions and states of the system and its environment.
It defines various classes of situations and their impor�
tance from the quality control standpoint. Usually,
such a model specifies a finite set of situation equiva�
lence classes, assuming that, upon testing, it is suffi�
cient to check system operation in at least one situa�
tion from each class. Sometimes, the situation model
describes a finite set of elementary events, with each
class being associated with some set of such events.
An example of such an event is execution of a given
instruction in the code of the system being tested.
In more complicated cases, the classes defined may
intersect; they also may have weights showing impor�
tance of checking a situation from the class.

Situation models are used for solving two closely
related tasks: selection of test adequacy or test com�
pleteness criterion [16] and selection of numeric met�
rics of test completeness. If determination of test com�
pleteness is based on coverage of classes of equivalent
situations or elementary events, we speak of a test cov�

erage criterion and test coverage metrics, and the per�
centage of classes covered achieved in the course of
testing is called test coverage.

Model based test construction consists in the fol�
lowing: a behavior model of the system under test is
created (extracted from project documents or taken
from somewhere else in a ready�to�use form), a situa�
tion model reflecting main project priorities and mak�
ing use of structural elements of the behavior model is
developed, and a test suite is constructed (generated
automatically, constructed manually or with the help
of tools). These tests check correspondence between
the actual behavior of the system under test and its
behavior model. In so doing, the test set is created in
such a way that it satisfies the test completeness crite�
rion specified by the situation model.

Methods used for the test construction can be clas�
sified into three groups.

• Probabilistic methods use pseudorandom genera�
tion of data of elementary types, pseudorandom aggre�
gation of these data into more complicated structures,
and pseudorandom generation of sequences of test
actions if it is required to check system behavior in var�
ious states. Note that test completeness is ensured
owing to the large number of tests, since construction
of a separate test is not a labor�consuming task. The
situation model here is the probability density of vari�
ous events.

• Targeted methods construct test data and
sequences purposefully such that they satisfy certain
features (most frequently, implement situations from
classes specified by the situation model). When using
methods of this kind, the almost minimal number of
tests is required to meet the test completeness crite�
rion. However, construction of each test usually
requires much effort of the operator and/or great com�
putational resources.

• Combinatorial methods construct test data and
sequences by combining various elements of these
sequences following certain schemes. The creation of
one test in this case requires much less expenditures
compared to the targeted construction and a little bit
more effort than that in the case of the probabilistic
construction. The test set is bigger than that in the tar�
geted testing but much less than that in the probabilis�
tic testing (and has greater variety than the latter).
In addition, the set obtained has no identical tests,
which often appear in randomly generated sets. The
combinatorial methods efficiently filtering out tests
that do not contribute into achieving the test com�
pleteness criterion are comparable in terms of effi�
ciency with the targeted methods. An example of such
techniques is test construction based on automaton
models, which creates tests in the form of a set of paths
in the graph of the automaton transitions by minimiz�

Fig. 3. Model of the work with an audit log.

294

PROGRAMMING AND COMPUTER SOFTWARE Vol. 36 No. 5 2010

KULIAMIN

ing it from the point of view of covering all possible
states and transitions.

2.1. Requirements to Model Representation
and Testing Tools

Model based testing tools work with some repre�
sentations of behavior and situation models. In order
to be successfully used in the framework of this
approach, these representations should possess the
following properties.

• Behavior models.

� The behavior models should have means for
describing requirements in different styles: as pure
declarative constraints (constraints on input data of
operations and their results), as contract specifications
(pre� and postconditions of operations) that use model
state, and executable models that determine the way
the system under test operate on a higher abstraction
level. This requirement is explained by the necessity to
express requirements formulated in a natural language
as clear as possible, permitting reformulation in
another style in the course of model construction,
since this makes it possible to reveal inaccuracies,
inconsistency, and incompleteness of original formu�
lations and make them more understandable [17].

� The behavior models should have means to
explicitly indicate links to documents and standards
containing the requirements. This makes it possible to

track relationships of the original requirements with
models and automatically generated tests.

� The behavior models should have possibility to be
automatically transformed into test oracles.

� The behavior models should be capable of using
model structures for specifying situation models.

� There should be possible to use these models in
the frameworks of other verification techniques (for
example, model checking or static analysis).

� It is useful to have a possibility of transforming a
behavior model into unambiguous and complete doc�
umentation of the system being modeled. However,
the ways this can be achieved are beyond the scope of
this paper.

• Situation models.

� The situation models should have means for
describing situations related to various aspects of
behavior and structure of the system under test. This
includes structure of input data and results, system
states, executable code instructions and functions
called, interaction patterns inside the system, possible
system errors, etc.

� The situation models should have means for
explicit indication of relationships of defined classes of
situations with the original requirements to the sys�
tem.

� The situation models should have possibility of
automatic transformation into components determin�

public class AccountCoverage extends AccountContract

{

public void transferCoverage(int sum)

{

boolean permission =

checkedObject.getValidator().validateTransfer(checkedObject, sum);

if (possibleTransfer(sum)) Coverage.addDescriptor(“Possible transfer”);

else Coverage.addDescriptor(“Too big sum”);

if (permission) Coverage.addDescriptor(“Permitted”);

else Coverage.addDescriptor(“Not permitted”);

if(balance == 0) Coverage.addDescriptor(“Zero balance”);

else if(balance > 0) Coverage.addDescriptor(“Positive balance”);

else Coverage.addDescriptor(“Negative balance”);

if(sum == 0) Coverage.addDescriptor(“Zero sum”);

else if(sum > 0) Coverage.addDescriptor(“Positive sum”);

else Coverage.addDescriptor(“Negative sum”);

}

}

Fig. 4. Situation model.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 36 No. 5 2010

COMPONENT ARCHITECTURE 295

ing the class of a current situation and measuring the
coverage achieved.

� The situation models should have possibility of
automatic extraction from the code of the system
under test or its models for targeted construction of the
corresponding tests.

The requirements to model representations are
classified into three types: expressiveness sufficient for
practical purposes, possibility of requirements track�
ing, and possibility to automate or facilitate solution of
various testing tasks. These tasks are presented in the
following list.

• Automatic test execution. Without automation
of test execution, it is impossible to organize system�
atic testing of complex systems.

• Verification of testing results. When a great num�
ber of tests are performed automatically, it is impossi�
ble to check their results manually. Therefore, special
test components (oracles) are required to automati�
cally estimate whether the system under test behaves
correctly in each particular case.

• Creation of test data and test sequences. Both are
important if the behavior of the complex system under
test depends on its state. Both test data and test
sequences should be formed such that test complete�
ness according to the situation model used increases.
Automated test construction suggests that necessary
sequences of calls and data of individual calls are cre�
ated automatically.

• Test sets configuring. A test suite for a complex
system consists of a great number of tests aimed at
checking different aspects of its behavior and different
structural elements. In order that such a suite could
efficiently be used in the course of system develop�
ment, flexible configuring tools meeting the con�
straints on the interaction between different tests are
required, which allow one to easily determine in each
particular case what tests need to be performed and
what tests are not required.

2.2. Unit Testing Tools

Let us consider existing testing tools from the point
of view of their use in a component�based technology.

The most appropriate among them in this regard
are unit testing tools [5]. The most well�known tool of
this kind is JUnit [6], which is written in Java and
designed for testing codes in this language (histori�
cally, the first tool was SUnit [18, 19], which was
designed for programs written in Smalltalk).

These tools are characterized by high flexibility,
possibility of adding absolutely independent units, and
possibility of using them in more complex test systems.
One of the unit testing tools possessing the richest
functionality is TestNG [20, 21]. Its basic characteris�
tics are as follows.

� Basic test elements are test classes and test meth�
ods described as Java classes and methods with anno�
tation Test.

� A test set has a hierarchical structure: it is com�
posed of test suites consisting of tests. Further in this
list, these terms are used only in the sense specific to
TestNG. Tests and tests suites are determined by test
configuration, which is described in some XML�based
format. A test is composed of methods selected either
based on their names or membership in groups speci�
fied in annotations of the methods.

� Set�up and tear�down methods used for initializ�
ing data before test execution and releasing resources
afterwards can be defined for all—suites, tests, classes,
and methods—hierarchy elements.

� It is possible to specify dependences between test
methods and groups, which control the order of their
execution and cancel test method execution if one of
the methods on which it depends was executed with an
error.

• Test data and objects.

� Test methods in TestNG can be parameterized.
The set of parameter values used in the framework of a
test is indicated by means of an additional annotation
or in a configuration file and should be represented
either as a collection of objects or as a sequence of
results returned by some method upon test execution.

� It is possible to create factories of objects that
construct various objects from the test classes. All
methods included in a test are executed for each object
of this kind.

• Verification of testing results.

� Like in other unit testing tools, verification is per�
formed by means of calls of special assertion methods.
Each method of this kind (their names begin with
word assert) checks an elementary property of its argu�
ments (equality, inequality null, membership of an
object in a collection, etc.) and, upon its violation,
outputs a message in the trace, which is also presented
as an argument.

� Additionally, TestNG supports indication of pos�
sible exceptions and constraints in the method anno�
tation during execution of a test method.

Unit testing tools widely use independent units for
solving specific problems: for example, dbUnit [22]
for organization of work with databases and httpUnit
[23] for processing HTTP queries. For a clearer nota�
tion of checks performed in tests (similar to formula�
tion in a natural language), one can use libraries
included in behavior driven development tools, e.g.,
JBehave [24] or NSpecify [25], for organization of test
stubs, such tools as Mockito [26], EasyMock [27], and
the like.

296

PROGRAMMING AND COMPUTER SOFTWARE Vol. 36 No. 5 2010

KULIAMIN

2.3. Model Based Testing Tools

Model based testing tools can be divided into three
groups from the point of view of how well they suit the
modular architecture.

• Traditional “monolith” tools using specific lan�
guages for model formulation. The addition of new
components into them can be done by only their
developers, and the use of these tools in the framework
of a wider tool is possible only if their designers took
care of appropriate interfaces.

Among the tools of this kind, almost all research
model based testing tools and a number of more robust
tools used in various projects—TorX [28, 29], TGV
[30, 31], BZ�TT [32], and Gotcha�TCBeans [33,
34]—are classified. All of them make use of various
automaton models. The same principles underlie
commercial tools Conformic Qtronic [35] and Smart�
esting Test Designer (earlier version had name Leirios)
[36].

• “Monolith” tools based on extensions of widely
used programming languages. Examples of this kind
are tools CTESK and JavaTESK supporting the
UniTESK technology [37–39] and SpecExplorer [40,
41] developed by Microsoft Research. In both cases, to
model behavior, combinations of automaton models
and contract specifications are used.

• Tools that use ordinary programming languages
for model formation and possess some modularity
characteristics. In particular, they are easily integrated
with components produced by independent designers
and can be used in the framework of wider tools.

Tools of this kind appeared only recently, about
four or five years ago. The two most well�known exam�
ples are ModelJUnit [8, 42] and NModel [43, 44].
A similar tool mbt.tigris.org [45] uses graphic notation
for model description, and, therefore, is less suitable
for using in the framework of other tools. A different
example is the CodeContracts library [46, 47] devel�
oped by Microsoft Research for description and check

@Test public class AccountTest

{

Account account;

boolean permission = true;

@Mock Validator validatorStub;

public AccountTest()

{

MockitoAnnotations.initMocks(this);

Mockito.when(validatorStub.validateTransfer(Mockito.<Account>any()

, Mockito.anyInt())).thenReturn(true);

}

public void setAccount(Account account)

{

this.account = account;

account.setValidator(validatorStub);

}

public Validator getPermitterStub() { return validatorStub; }

@State public int getBalance() { return account.getBalance(); }

@State public boolean getPermission() { return permission; }

@Test

@DataProvider(name = “sumArray”)

@Guard(name = “bound”)

public void testDeposit(int x)

{

account.transfer(x);

}

Fig. 5. Test model.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 36 No. 5 2010

COMPONENT ARCHITECTURE 297

of declarative constraints on behavior of .NET com�
ponents.

The capabilities of the tools of the last kind, which
have sound modular structure, are worthy a more
detailed discussion.

ModelJUnit and NModel are constructed as
extensions of simple unit testing tools. Situation mod�
els in these tools are not specified; completeness crite�
ria are implicitly built in the test construction algo�
rithms used. The behavior model is transformed into a
dual test model, which determines the way the behavior
is studied and checked rather than the behavior itself.

• The test model is defined as an extended finite�
state machine represented in a programming language
(Java or C#) as a test class, like in the unit testing tools.
Such a class is either marked by an annotation
(attribute in C#) or implements some interface. Ele�
ments of the automaton model—states, transitions,
and transition guard conditions—are defined by
means of methods and fields of this class.

� A state of a test model in NModel is given by a set
of values of fields of the test class (it is possible to
define fields not included in the state) and by the result
of method getState in ModelJUnit.

� Actions the execution of which corresponds to
transitions in the test model are represented by meth�
ods marked by a certain annotation (attribute).
In NModel, actions can be parameterized, with the
set of parameter values used in the framework of the
test being indicated by means of an additional annota�
tion in the form of a collection of objects of an appro�
priate type.

� Actions may have guard conditions, which must be
satisfied in order that the corresponding action could
be executed. These conditions are represented as
methods with the names constructed from the name of
the corresponding method–action and some postfix.

• NModel has the following additional capabili�
ties.

� Composition of several models in which actions
with one name are executed simultaneously. The mod�

@Test

@DataProvider(name = “sumIterator”)

public void testWithdraw(int x)

{

account.transfer(-x);

}

@Test

@Guard(name = “bound”)

public void testIncrement()

{

account.transfer(1);

}

@Test

public void switchPermission()

{

permission = !permission;

Mockito.when(validatorStub.validateTransfer(Mockito.<Account>any()

, Mockito.anyInt())).thenReturn(permission);

}

public boolean bound()

{

return getBalance() < 5 || !permission;

}

public int[] sumArray = new int[]{1, 2};

public Iterator<Integer> sumIterator()

{

return (Utils.ArrayToTypedList(sumArray)).iterator();

}

}

Fig. 5. (Contd.)

298

PROGRAMMING AND COMPUTER SOFTWARE Vol. 36 No. 5 2010

KULIAMIN

els used in the composition are indicated by listing
names of the corresponding classes.

� Test model checking. Safety properties corre�
spond to invariants represented as methods with a spe�
cific attribute. Liveness properties can be checked by
analyzing reachability of states in which specially
marked characteristic methods return true.

The CodeContracts library provides means for
describing purely declarative constraints on properties
of input parameters and results of operations. Model�
ing of states is not supported. The following capabili�
ties are available.

• Constraints are written in C# as Boolean expres�
sions passed as arguments of library methods.

• Constraints of the following types can be
described:

� preconditions of operations (Contract.Requires
method);

� postconditions of operations upon normal opera�
tion (Contract.Ensures);

� postconditions of operations upon exceptions
(Contract.EnsuresOnThrow);

� assertions on fulfillment of constraints at some
point of the code inside a method (Contract.Assert);

� class invariants (methods invoking Con�
tract.Invariant marked by a specific attribute).

• In addition to standard expressions in C#, the
following ones can be used:

� quantifier expressions in the form of calls to Con�
tract.Exists and Contract.ForAll;

� access to expression values before execution of the
method under test in the postconditions in the form of
call of the Contract.OldValue method;

� access to the value of the result in the postcondi�
tions by means of Contract.Result.

• The CodeContracts library is supplemented with
two tools: one for static check of formulated con�
straints based on theorem proving and another for
dynamical check in the course of execution of meth�
ods the constraints on which are described.

2.4. Summary of the Survey of the Existing Tools

It can be seen from the survey presented that the
model based unit testing tools are actively developing;
however, their capabilities are worse than those of the
unit testing tools. The existing developments should be
supplemented by the following features.

• Explicit definition of the behavior model of the
component being checked independent of the test
model. This separation is necessary to support model�
ing accuracy and completeness. It also provides an
opportunity to construct various tests aimed at achiev�
ing different goals based on one behavior model both
for this component and for subsystems containing it.
Another useful feature is the possibility of using such
models in other verification techniques. The Code�

Contracts library is an example of the behavior model
separation.

• Extended expressive capabilities for describing
behavior models. In particular, it is required to ensure
possibility of using different modeling styles and dif�
ferent test construction techniques. This requirement
results from complexity and diversity of requirements
to modern software [48, 49]. The CodeContracts
library allows one to specify constraints only on input
data and results, which considerably reduces its use in
practically significant systems the behavior of which
depends on the state.

• Explicit definition of the situation model for test
construction. Implicit specification of the situation
models in the existing tools restricts possibilities of
using various test completeness criteria and makes
their selection more difficult for the test designers. The
explicit selection of these models will make it possible
to combine various completeness criteria with regard
to coverage of both the code being checked and the
requirements to it.

• Means for explicit tracing of models to require�
ments in a natural language. Capabilities of this kind,
which are necessary for the requirement tracking, are
available in the CTESK and SpecExplorer tools.
In the unit testing means, one can use text messages in
the assertion verification methods for this purpose;
however, NModel and ModelJUnit lack this possibility.

• Joint use of models of behavior, situations, and
tests related by various aspects of functionality of one
component based on noninvasive composition. This
greatly simplifies reuse of models in tests and other
verification techniques. NModel partially solves this
problem for the test models owing to the possibility of
extending definitions of classes by new fields and
methods in C#.

3. ARCHITECTURE FRAMEWORK
FOR MODEL BASED TESTING

In this section, the proposed architecture of the
model based testing tools satisfying the above�formu�
lated requirements is described. First, we make some
comments related to the selection of means for solving
the posed problems.

• As has already been noted, it is useful to employ
different techniques for describing behavior of the
components under test. However, it seems impossible
to support all kinds of models in one technology.
Therefore, it is useful to identify at once practically
important approaches that can simultaneously be sup�
ported in the framework of one technology.

In modeling program interfaces with known
requirements, it is convenient to use contract specifica�
tions in the form of pre� and postconditions relying on
the model states of the components. The approaches
based on such specifications demonstrate good scal�
ability and efficiency in terms of working hours

PROGRAMMING AND COMPUTER SOFTWARE Vol. 36 No. 5 2010

COMPONENT ARCHITECTURE 299

required for description of some set of interface ele�
ments [38, 50, 51].

On the other hand, to model float�point calcula�
tions, complex protocols, and some other software, it
is sometimes more convenient to use executable mod�
els, which are simpler implementations of the same
functionality. The most convenient models of this kind
in practice are extended finite state machines and
transition systems, as well as their compositions.

In modeling some reactive systems processing large
streams of events or services regularly processing data
from large databases, data�flow contracts, which
describe constraints on the processing of one element
in the input data stream rather than on the final result,
turn out useful.

• The behavior and situation models, as well as the
tests themselves and elements of the development
tools, should have form of components or sets of com�
ponents (subsystems) in the framework of the selected
component�based technology with minimal addition
of new constructs requiring additional language and
instrumental support.

Such an approach allows one to apply all tools,
means, and techniques provided by the base compo�
nent technology to work with these models and their
integration with the components under test. This
greatly reduces expenditures on the development of
tools supporting such a technology and makes it possi�
ble to use the same tools and created component mod�
els in the construction of tests for large�scale systems.
This lays foundation for the fulfillment of the require�
ments to the component�based verification technologies.

• The application of widely used component�
based technologies and programming languages
makes it easier to learn how to use the tools and allows
one to take advantage of using numerous auxiliary
libraries designed for solving specific problems of unit
testing.

• It often happens that verification systems (which
include great variety of components) are more compli�
cated than those for verification of which they have
been created. Therefore, it is important to reduce their
complexity and effort required for their design. To
facilitate integration and reconfiguration of systems
consisting of many components, it is recommended to
use whenever possible noninvasive component integra�
tion techniques, which avoid introduction of modifica�
tions in the codes of the components. This can be
achieved through wide use of the dependency injection
pattern [52] and libraries–containers supporting it.

3.1. Types of Components and Integration of Them

We propose to develop a model based testing tool
on the basis of the dependency injection container,
which makes it possible to specify the list of compo�
nents of the test system, initialize them, and externally

define relationships between them, without interven�
tion into codes of these components.

Verification systems are constructed from compo�
nents of different types.

• Components to be verified.
These components should support possibility of

external initialization with the help of the dependency
injection container. If this requirement is not fulfilled, it
is usually not difficult to write a component–wrapper
that meets this requirement and provides access to the
operations of the original component to be verified.

The components under check do not depend on
the test system, except for using stubs, which replace
components needed for their operation.

• Behavior models (generalized contracts).
These components are constructed in the basic

programming language as classes with several methods
performing certain roles. For example, in a purely
declarative specification, pre� and postconditions
should be defined (note that any method without side
effects that returns a Boolean value may play these
roles). For a specification that uses component model
state, a state synchronizer is necessary to synchronize
the model state with the actual state of the component
under check. Executable specifications must define
the preconditions and changes of the states.

The behavior models depend on the components
under test or, if interfaces of the model and component
differ, on the adapters eliminating such differences.

• Interaction models.
When describing many�component systems, in

addition to the models of separate components, it is
required sometimes to explicitly introduce models of
their interaction, which allow one to estimate correct�
ness of complex sets of actions and reactions in which
several components take part, with each of them being
familiar with only a part of the events. For example,
the so�called interleaving semantics is an interaction
model for asynchronous interactions of components
working in parallel. In the framework of this model,
any set of events is correct if it can be linearly ordered
such that each separate event under this ordering is
correct with respect to models of the components that
create or process it [50].

Interaction models are constructed in the form of
template library modules attached in the configura�
tion file to the corresponding groups of components.
For each particular interaction, an instance of such a
pattern is generated, which depends on the behavior
models of the components taking part in this interac�
tion.

• Situation models.
The situation models are constructed in the basic

programming language as methods that monitor
occurrences of certain situations after checking con�
straints describing them. For some operations, situa�
tion models may include both pre�situations, which
are determined by arguments of the operation and

300

PROGRAMMING AND COMPUTER SOFTWARE Vol. 36 No. 5 2010

KULIAMIN

states of the components before the operation was
called, and post�situations, which correspond to cer�
tain properties of the results and states after the opera�
tion was performed. Like contract specifications,
models of post�situations may have model states and
methods–synchronizers.

The situation models depend on the components
being verified, behavior models, or test models, depend�
ing on what terms are used to describe the situation.

The situation models can automatically be
extracted from the behavior models, interfaces and
codes of the components under test, since criteria of
test completeness based on code structure or function�
ality are often used in test construction. These gener�
ated components are further referred to as secondary
components.

• Tests.
Like the situation models, the tests can be created

by the designers or generated from the behavior mod�
els and interfaces of the components under test. Each
test should define a sequence of calls to operations of
the component under test (which may consist of only
one call) and values of parameters of these calls and
test data.

� The first task can be solved with the help of two
approaches.

� In practice, a combination of an automaton
model of the test and a generator of paths in the
automaton transition graph is most frequently used.
This technique underlies ModelJUnit and NModel.

In this case, the automaton model of the test must
determine methods that play roles of actions and guard
conditions, as well as return current state of the
automaton. The test model may depend on the com�
ponent under test or on its behavior model.

� In a number of cases, it is more efficient to use a
monolith generator of sequences based on the infor�
mation on the interface under test.

� Generation of test data, especially data of com�
plex structure, can use many components playing dif�
ferent roles.

� Primary generators, which construct objects of a
certain type. Such a generator may be organized as an
iterator of some collection.

� Filters discarding data that do not satisfy certain
constraints.

� Constraint solvers that directly construct data
satisfying certain constraints.

� Combinators constructing complex data from
simple objects.

� Transformers generating data of some type from
a simpler coded representation of these data.

• Adapters.
The adapters alleviate possible differences between

interfaces of models and the components they model.
The adapters depend on the components under

test. If they are responsible for synchronization of

model states, they depend also on the corresponding
behavior model.

It should be noted that, in many cases, small differ�
ences between the model interface and verified inter�
face do not require writing an adapter and can be elim�
inated by indicating a library transformation proce�
dure. This refers to the cases where the differences
reduce to the lack of a number of parameters, permu�
tation of parameters, or simple type transformations,
e.g., numbers to strings and vice versa. In all these
cases, the adapter is constructed automatically, by the
indication of the corresponding transformation in the
configuration file of the test system, rather than man�
ually.

• Stubs (test doubles).
Stubs replace components that affect those under

test. They are classified into two types.
� Mock passes some data in the form of results

returned by its methods to the component under test
and serves as an additional source of actions on it.

� Test spy records calls of its operations and their
arguments for checking correctness of calls made by
the component under test.

Theoretically, one stub can simultaneously play
both roles; however, this is seldom required in practice
(this may be an evidence of too complicated test orga�
nization, which, possibly, needs modifications).

The component under test depends on the stubs
used. The test and behavior model depend on the test
spy they use. Vice versa, the mock itself depends on the
test, since the test determines results of the current call
of its operations.

• Auxiliary components. The auxiliary compo�
nents include those that solve numerous tasks of orga�
nization of the verification system work, integration of
its components, and collection of information about
the events.

� Tracers of various events. Basically, a separate
event tracer is attached to each component. All tracing
messages are collected by one or several trace genera�
tors.

� Planners of tests that include asynchronous
actions responsible for the creation of separate pro�
cesses and threads inside the test system and distribu�
tion of actions on them.

� Dispatchers and synchronizers of separate opera�
tions in asynchronous and parallel tests.

� Configurators determining links inside a group of
components.

Figure 1 demonstrates one possible configuration
of a test system based on the proposed architecture.
Links between the components depicted in the figure
are dependences typical of components of the given
type (not all possible dependences are shown). Links
of the trace generator and configurator are not shown,
since all, or almost all, components are related to
them.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 36 No. 5 2010

COMPONENT ARCHITECTURE 301

A particular set of components and links between
them are described in the configuration file in the
XML format that comes to the input of the depen�
dency injection container, which initializes all compo�
nents and links between them as required. Such a
method of links specification allows us to construct
various configurations of the test system without mod�
ifying codes of its components and even having no
access to them. On the other hand, it is possible to
define fixed links in the code itself, as well as to apply
flexible linking by means of annotations and to create
special components–configurators that contain explicit
initialization of the components and links between
them in the basic programming language.

3.2. Implementation of the Proposed Approach

For the basic programming language to implement
the proposed architecture, Java was selected. It pos�
sesses features necessary for description of various
roles of classes and methods, as well as links between
the components, such as means for description of
declarative information about elements of the code in
the form of annotations and support in obtaining
dynamical information on the structure of the compo�
nents and signatures of their operations (introspection
or reflection). Some other languages, say C#, also pos�
sess these features.

For the dependency injection container, the open
library Spring [45, 46] was selected, which supports
many functions of systems of this type.

To describe behavior models, a small library was
developed. On the one hand, it is similar to the asser�
tion verification libraries used in the unit testing tools
(various assert() methods are used); on the other hand,
it reminds Microsoft CodeContracts (to access the
operation result and expression pre�values, methods
result() and oldValue() are used). In contrast to Code�
Contracts, creation of contract specifications that use
the model state is supported. In the created library,
quantifier expressions (which are available in Code�
Contracts) are not used, and static analysis of con�
straints is not supported.

A small library was also created for describing the
situation models to ensure tracking of information
about coverage of specified situations.

Tests are represented in the style that is similar to
that in ModelJUnit and NModel but has some exten�
sions borrowed from TestNG.

• An extended hierarchy of test elements—test
suites, tests, test classes, test methods—is supported.
A test suite consists of tests; one test may include sev�
eral test classes.

• A test class describes an extended finite state
machine.

• A state of this finite state machine is a compound
result returned by all methods marked by annotation
State. This makes it possible to add new elements in a

state without modifying the earlier written code. The
test state is a list of states of classes containing in it.

• Test methods define actions (possibly, parame�
terized) of the finite state machine. Parameter values
are extracted from the data provider associated with
the test method. The provider may be a generator of
sets of values defined, for example, as elements of
some collection or may be constructed dynamically
from data generators for different parameters with cer�
tain strategy of their combining (select all combina�
tions, every value of each parameter at least once, all
possible pairs of values, and the like). The data provid�
ers and the method of their combining are given by
means of annotations of the method and its separate
parameters.

• Actions may have guard conditions in the form of
methods returning a Boolean result and depending on
the state of an object from the test class. A guard con�
dition is attached to the test method by means of
annotations without using agreements on method
naming. Hence, one and the same condition can be
used for different methods, and one method may have
several guard conditions. Besides, the parameter of a
guard condition may be any set that is the beginning of
the parameter set of the corresponding method,
including the empty set (in this case, the guard condi�
tion depends on only the current state).

• Like in TestNG, any test element—suite, test,
class, or method—may have set�up and tear�down
methods. In addition, it is possible to define configu�
ration methods called upon attending a current state.

To construct stubs, the open library Mockito [26] is
used. It has sufficiently rich capabilities of defining
mocks and test spies and uses intuitively clear syntax
for their description. This example shows that, upon
presence of a Java library with the required functional�
ity, it can easily be used in the framework of the pro�
posed architecture.

4. EXAMPLE OF TEST CONSTRUCTION

Below is an example of use of the proposed
approach for constructing tests for a simple imple�
mentation of functionally of a bank account. The
interface of the component under test is presented
below.

public interface Account

{

int getBalance();

int getMaxCredit();

Validator getValidator();

void setValidator(Validator p);

AuditLog getLog();

void setLog(AuditLog log);

int transfer(int sum);

}

302

PROGRAMMING AND COMPUTER SOFTWARE Vol. 36 No. 5 2010

KULIAMIN

Methods getBalance() and getMaxCredit()
are used to obtain the current balance and maximum
possible credit. If the balance is negative, it cannot
exceed the maximum credit in absolute value.

Method int transfer() transfers money
from/to the account, depending on the sign of its argu�
ment. If the argument is positive, the corresponding
sum is added to the account, increasing the balance. If
it is negative, this sum is withdrawn, assuming that the
balance does not go beyond the limit. The result of this

method is the sum transferred or 0 if the transfer was
not performed.

The current account makes it possible to use a spe�
cial transaction validator Validator, which is ques�
tioned upon any transfer by means of the method
boolean validateTransfer(Account a, int

sum) it provides and may permit or ban the transfer.
Another account function is writing information

about attempts of money transfer in a log for the subse�
quent audit. In this case, interface methods AuditLog:

<?xml version=“1.0” encoding=“UTF-8”?>

<beans xmlns=“http://www.springframework.org/schema/beans”

xmlns:aop=“http://www.springframework.org/schema/aop”

xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation=“http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

http://www.springframework.org/schema/aop

http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

<bean id="accountImpl" class="mbtest.tests.AccountImpl"></bean>

<bean id="accountTest" class="mbtest.tests.AccountTest">

<property name="account" ref="accountImpl"/>

</bean>

<bean id="accountContract" class="mbtest.tests.AccountContract">

<property name="checkedObject" ref="accountImpl"/>

</bean>

<bean id="accountCoverage" class="mbtest.tests.AccountCoverage">

<property name="checkedObject" ref="accountImpl"/>

</bean>

<bean id="accountLogSpy" class="mbtest.tests.AccountLogSpy">

<property name="checkedObject" ref="accountImpl"/>

</bean>

<bean id="accountContractExecutor" class="mbtest.contracts.ContractExecutor">

<property name="postcondition"

value="mbtest.tests.AccountContract.transferPostcondition"/>

<property name="updater" value="mbtest.tests.AccountContract.transferUpdate"/>

<property name="object" ref="accountContract"/>

</bean>

<bean id="accountCoverageExecutor" class="mbtest.coverage.CoverageExecutor">

<property name="coverage"

value="mbtest.tests.AccountCoverage.transferCoverage"/>

<property name="updater" value="mbtest.tests.AccountCoverage.transferUpdate"/>

<property name="object" ref="accountCoverage"/>

</bean>

Fig. 6. Test system configuration.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 36 No. 5 2010

COMPONENT ARCHITECTURE 303

logKind(String s), logOldBalance(int b),

logSum(int sum), logNewBalance(int b) are
invoked, which record the result of the transaction
(SUCCESS, in the case of a successful transfer;
BANNED, if the transfer was banned by the validator;
and IMPROPER, if there was an attempt to withdraw
too much money), the previous balance value, the sum
transferred, and the new balance value.

The behavior model for the account is described as
two independent components: the basic functionality
model and the model of work with audit log. This
allows one to modify and check these two groups of
constraints independently. The description of the
basic functionality—the postcondition of method
transfer() and the corresponding synchronizer of
the model state—is presented in Fig. 2.

The description of the requirements to the work
with the log for audit is shown in Fig. 3. It uses the
freely distributed library of stubs Mockito and installs
a stub to observe calls between the account and the
corresponding logger. The stub checks whether the
logger methods are called in the required order and
with the required arguments. Since the stub has a
model state, it also contains a method–synchronizer
of this state. The stub must be reinitialized after every
call of transfer(). To this end, method initSpy()
is defined in it.

The description of the situation model is presented
in Fig. 4. Here, situations are classified in terms of the
following four characteristics: transfer correctness,
passing the validation, sign of the preceding balance
value, and sign of the sum transferred. Since the deter�
mination of a situation depends on the model state of
the account and needs state synchronizer, this model
inherits the functionality models, reusing its code ele�
ments.

The test model for the account is presented in Fig. 5.

The test state consists of the following two ele�
ments: the current balance and the permission field
value, which determines results of work of the valida�
tor mock. Withdrawal and deposit of money are tested
by different methods in spite of the fact that the one
and the same method of the object under test is
invoked. There are four test methods corresponding to
actions in the described finite state machine.

• Method testDeposit() checks money deposit
on the account. The method is parameterized, and the
values of the parameters are taken from the sumArray
array. Besides, this method has a guard condition that
permits its call only when the current balance does not
exceed 5 and the validator–stub permits the operation.

• Method testWithdraw() checks money with�
drawal from the account. The values of its parameter

<bean id="accountSpyExecutor" class="mbtest.contracts.SpyExecutor">

<property name="initialization" value="mbtest.tests.AccountLogSpy.initSpy"/>

<property name="postcondition"

value="mbtest.tests.AccountLogSpy.transferLogSpy"/>

<property name="updater" value="mbtest.tests.AccountLogSpy.transferUpdate"/>

<property name="object" ref="accountLogSpy"/>

</bean>

<aop:config>

<aop:aspect id="accountContractAspect" ref="accountContractExecutor">

<aop:pointcut id="accoutTransfer"

expression="execution(* mbtest.tests.Account.transfer(..))"/>

<aop:around pointcut-ref="accoutTransfer" method="execute"/>

</aop:aspect>

<aop:aspect id="accountCoverageAspect" ref="accountCoverageExecutor">

<aop:pointcut id="accoutCTransfer"

expression="execution(* mbtest.tests.Account.transfer(..))"/>

<aop:around pointcut-ref="accoutCTransfer" method="execute"/>

</aop:aspect>

<aop:aspect id="accountSpyAspect" ref="accountSpyExecutor">

<aop:pointcut id="accoutSTransfer"

expression="execution(* mbtest.tests.Account.transfer(..))"/>

<aop:around pointcut-ref="accoutSTransfer" method="execute"/>

</aop:aspect>

</aop:config>

</beans>

Fig. 6. (Contd.)

304

PROGRAMMING AND COMPUTER SOFTWARE Vol. 36 No. 5 2010

KULIAMIN

are taken from the same array with the help of a
method–iterator.

• Method testIncrement() checks addition of
the sum equal to 1 to the account. It has the same
guard condition as method testDeposit().

• Method switchPermission() checks nothing
and only switches the current value of field permis-
sion to test the work of the account with different bal�
ances and different results of transfer validation.

Finally, the configuration file for environment
Spring determining links between all listed compo�
nents is presented in Fig. 6.

In this configuration, it is indicated how to initial�
ize objects of all above�listed types, and, additionally,
the binding of postconditions and synchronizers of all
models to method transfer() is defined with the
help of the aspect binding technique supported by
Spring.

The example presented demonstrates that the pro�
posed method of constructing a test system from given
components is not invasive: all these components
know nothing about each other, except for types of
objects they directly depend on. In this configuration,
the model of basic functionality and the situation
model are represented by different objects; however,
since the second model inherits the first model, it is
possible to implement them by means of one compo�
nent that plays two different roles.

5. CONCLUSIONS

In the paper, component architecture of model
based testing tools is presented. It is constructed on the
basis of the component technologies and the principle
of noninvasive composition. Although separate ele�
ments of the proposed architecture have already been
used in some tools, like TestNG, ModelJUnit, and
NModel, this is the first presentation of the architec�
ture in its entirety. A Spring�based implementation of
the proposed approach relying on the dependency
injection technique is described. An example of appli�
cation of the approach to constructing a test including
several models of various aspects of behavior of the
component under test is presented.

The existing implementation of the approach dis�
cussed has several drawbacks that need to be elimi�
nated.

• First, it is required to modify standard depen�
dency injection context of Spring to make it recognize
components specific to the test systems (behavior
model, stub, situation model, test model, etc.) and
require less parameters for their initialization, as well
as automatically construct their aspect binding to the
components under test. This will considerably simplify
creation and modification of the configuration files (in
the example presented, will remove the text in the
framework of element <aop:config> and the defini�
tions of the last three components). The configuration

files will considerably be simplified and may become
useful tools for configuring and adjusting complex test
suites without recompilation.

• Second, tools for generation of secondary com�
ponents, situation models, and test models have not
been implemented yet. It is assumed that they will be
developed on the basis of one of the open libraries for
transformations of Java byte�codes. Such an imple�
mentation will make it possible to generate secondary
components without accessing source codes of their
preimages. In this case, convenience of measuring
coverage of the code or behavior models in the frame�
work of the proposed architecture will be comparable
with that achieved with the use of the leading special�
ized tools.

• Third, logically distinct elements of the frame�
work for construction of test systems—generators of
paths on the automaton model, library data genera�
tors, combinators, and the like—should also be sepa�
rated as externally defined and configured compo�
nents. This will improve flexibility of possible configu�
rations of the test system and will make it possible to
easily integrate new techniques of test construction in
the approach discussed.

However, even now, the proposed architecture
demonstrates its advantages over traditional “mono�
lith” tools of test construction: high flexibility, possi�
bility of joint use with various libraries and numerous
tools designed for work with Java components (frame�
works, code analyzers, debuggers, and so on), and
possibility of integration in more powerful environ�
ments.

REFERENCES

1. Szyperski, C., Component Software: Beyond Object�Ori�
ented Programming, Boston: Addison�Wesley, 2002,
2nd ed.

2. Heineman, G.T. and Councill, W.T., Component�Based
Software Engineering: Putting the Pieces Together, Addi�
son�Wesley, 2001.

3. Parnas, D., Information Distribution Aspects of Design
Methodology, Proc. of 1971 IFIP Congress, North Hol�
land, 1971.

4. The Economic Impacts of Inadequate Infrastructure for
Software Testing, Tassey, G., Ed., NIST Report, 2002.

5. Hamil, P., Unit Test Frameworks. Tools for High�Quality
Software Development, O’Reilly Media, 2004.

6. http://www.junit.org.

7. Model�Based Testing of Reactive Systems. Advanced
Lectures, Broy, M., Jonsson, B., Katoen, J.�P.,
Leucker, M., and Pretschner, A., Eds., Lecture Notes in
Computer Science, vol. 3472, Springer, 2005.

8. Utting, M. and Legeard, B., Practical Model�Based
Testing: A Tools Approach, Morgan�Kaufmann, 2007.

9. Peters, D. and Parnas, D., Using Test Oracles Gener�
ated from Program Documentation, IEEE Trans. Soft�
ware Engineering, 1998, vol. 24, no. 3, pp. 161–173.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 36 No. 5 2010

COMPONENT ARCHITECTURE 305

10. Hoffman, D., Analysis of a Taxonomy for Test Oracles,
Quality Week, 1998.

11. Baresi, L. and Young, M., Test Oracles, Tech. Report
CIS�TR�01�02, http://www.cs.uoregon.edu/~michal
/pubs/oracles.html.

12. Harel, D., Statecharts: A Visual Formalism for Com�
plex Systems, Sci. Comput. Programming, 1987, vol. 8,
no. 3, pp. 231–274.

13. Drusinsky, D., Modeling and Verification Using UML
Statecharts, Elsevier, 2006.

14. Alur, R., and Dill, D.L., A Theory of Timed Automata,
J. Theor. Comput. Sci., 1994, vol. 126, no. 2, pp. 183–
235.

15. Springintveld, J., Vaandrager, F., and D’Argenio, P.R.,
Testing Timed Automata, Theor. Comput. Sci., 2001,
vol. 254, no. 1–2, pp. 225–257.

16. Zhu, H., Hall, P., and May, J., Software Unit Test Cov�
erage and Adequacy, ACM Computing Surveys, 1997,
vol. 29, no. 4, pp. 366–427.

17. Kuliamin, V.V., Pakulin, N.V., Petrenko, O.L.,
Sortov, A.A., Khoroshilov, A.V., Requirement Formal�
ization in Practice, Preprint of Inst. of System Program�
ming, Russ. Acad. Sci., Moscow, 2006, no. 13.

18. Beck, K., Kent Beck’s Guide to Better Smalltalk: A
Sorted Collection, Cambridge Univ. Press, 1998.

19. http://sunit.sourceforge.net/.

20. Beust, C. and Suleiman, H., Next Generation Java Test�
ing: TestNG and Advanced Concepts, Addison�Wesley,
2007.

21. http://testng.org/.

22. http://www.dbunit.org.

23. http://www.httpunit.org.

24. http://jbehave.org/.

25. http://nspecify.sourceforge.net/.

26. http://mockito.org/.

27. http://easymock.org/.

28. Tretmans, J. and Brinksma, E., TorX: Automated
Model�Based Testing, Proc. of 1st Eur. Conf. on Model�
Driven Software Engineering, Nuremberg, Germany,
2003, pp. 31–43.

29. http://fmt.cs.utwente.nl/tools/torx/introduction.html.

30. Fernandez, J.�C., Jard, C., Je �ron, T., Nedelka, L., and
Viho, C., Using On�the�Fly Verification Techniques for
the Generation of Test Suites, Lecture Notes in Com�
puter Science (Proc of 8th Int. Conf. on Computer�
Aided Verification), Springer, 1996, vol. 1102, pp. 348–
359.

31. http://www.inrialpes.fr/vasy/cadp/man/tgv.html.

32. Ambert, F., Bouquet, F., Chemin, S., Guenaud, S.,
Legeard, B., Peureux, F., Vacelet, N., and Utting, M.,
Z�TT: A Tool�set for Test Generation from Z and B
Using Constraint Logic Programming, Proc. of Formal
Approaches to Testing of Software, Brno, Czech Repub�
lic, 2002, pp. 105–119.

33. Hartman, A. and Nagin, K., TCBeans Software Test
Toolkit, Proc. of 12�th Int. Software Quality Week, 1999.

34. Farchi, E., Hartman, A., and Pinter, S.S., Using a
Model�based Test Generator to Test for Standard Con�

formance, IBM Systems J., 2002, vol. 41, no. 1, pp. 89�
110.

35. http://www.conformiq.com/qtronic.php.

36. http://www.smartesting.com/index.php/cms/en/exp�
lore/products.

37. Bourdonov, I., Kossatchev, A., Kuliamin, V., and
Petrenko, A., UniTesK Test Suite Architecture, Lecture
Notes in Computer Science (Proc. of FME 2002),
Springer, 2002, vol. 2391, pp. 77–88.

38. Kuliamin, V.V., Petrenko, A.K., Kossatchev, A.S., and
Bourdonov, I.B., The UniTesK Approach to Designing
Test Suites, Programmirovanie, 2003, no. 6, pp. 25–43
[Programming Comput. Software (Engl. Transl.), 2003,
vol. 29, no. 6, pp. 310–322].

39. http://www.unitesk.ru.

40. Campbell, C., Grieskamp, W., Nachmanson, L.,
Schulte, W., Tillmann, N., and Veanes, M., Testing
Concurrent Object�Oriented Systems with Spec
Explorer, Lecture Notes in Computer Science (Proc. of
Formal Methods Europe), Springer, 2005, vol. 582,
pp. 542–547.

41. http://research.microsoft.com/en�us/projects/SpecExp�
lrer/.

42. http://www.cs.waikato.ac.nz/~marku/mbt/modeljunit/.

43. Jacky, J., Veanes, M., Campbell, C., and Schulte, W.,
Model�based Software Testing and Analysis with C#,
Cambridge Univ. Press, 2007.

44. http://nmodel.codeplex.com/.

45. http://mbt.tigris.org/.

46. Barnett, M., Fahndrich, M., de Halleux, P., Logozzo, F.,
and Tillmann, N., Exploiting the Synergy between
Automated�Test�Generation and Programming�by�
Contract, Proc. of ICSE 2009, Vancouver, Canada,
2009.

47. http://research.microsoft.com/en�us/projects/contracts/.

48. Kaner, C., Bach, J., and Pettichord, B., Lessons
Learned in Software Testing, Wiley, 2002.

49. Kuliamin, V.V., Integration of Verification Methods for
Program Systems, Programmirovanie, 2009, no. 4,
pp. 41–55 [Programming Comput. Software (Engl.
Transl.), 2009, vol. 35, no. 4, pp. 212–222].

50. Kuliamin, V., Petrenko, A., and Pakoulin, N., Practical
Approach to Specification and Conformance Testing of
Distributed Network Application, Lecture Notes in
Computer Science (Proc. of ISAS'2005), Berlin,
Springer, 2005, vol. 3694, pp. 68–83.

51. Grinevich, A., Khoroshilov, A., Kuliamin, V., Mark�
ovtsev, D., Petrenko, A., and Rubanov, V., Formal
Methods in Industrial Software Standards Enforce�
ment, Proc. of PSI'2006, Novosibirsk, Russia, 2006.

52. Fowler, M., Inversion of Control Containers and the
Dependency Injection Pattern, 2004. http://www.mar�
tinfowler.com/articles/injection.html.

53. Johnson, R., Hoeller, J., Arendsen, A., Risberg, T., and
Sampaleanu, C., Professional Java Development with
the Spring Framework, Wrox, 2005.

54. http://www.springsource.org.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

