
ISSN 0361�7688, Programming and Computer Software, 2011, Vol. 37, No. 3, pp. 121–146. © Pleiades Publishing, Ltd., 2011.
Original Russian Text © V.V. Kuliamin, A.A. Petukhov, 2011, published in Programmirovanie, 2011, Vol. 37, No. 3.

121

1. INTRODUCTION

High complexity of modern software systems and
importance of tasks solved by them make the problem
of verifying correctness of operation of such systems
(i.e., checking whether these systems meet the
requirements imposed on them in all possible situa�
tions) very topical. Such verification relies most often
on testing, i.e., analysis of behavior of the system
under test on a finite set of specially created test situa�
tions.

In order to ensure quality and completeness of the
verification, the number of tests should be as large as
possible. However, complete testing is impossible,
since the number of possible situations in which
behavior of real systems is to be checked is practically
infinite. Therefore, in practice, one tries to get knowl�
edge of system behavior by observing its behavior in a
relatively small number of test situations. Usually, test
situations in this case are divided into equivalence
classes such that the behavior of the system under test
differs insignificantly in situations from one class and
change considerably when turning from one class to
another. Then, testing completeness is determined as a
degree of coverage of special classes of situations by
tests. In the course of test execution, system behavior
is analyzed, and its conformance to the requirements
is checked.

Since testing must be bounded in time, the number
of classes is always finite. However, it may be quite
large in order to ensure effective testing in a given
project. Possible situations and behavior scenarios of
the system under test are often classified in terms of
some set of factors, characteristics, or parameters,
each of which may take a finite number of values. In
this case, different classes of situations correspond to
different possible combinations of values of the speci�
fied factors.

Examples of factors used in the classification of the
situations are given below.

• success or failure of execution of a certain oper�
ation;

• branching in the code of the tested component,
with the value of the corresponding factor being exe�
cution of the if or else branches;

• a grammar rule alternative (selection from sev�
eral possible variants) in grammar�based testing [1, 2];
the values in this case are possible ways to resolve the
alternative;

• a category in category�partition testing [3].

In many cases, high�quality testing requires check�
ing relationships between the factors and joint effect of
these factors on the system behavior. To perform such
checking, it is required to combine factor values in a
way that, on the one hand, allows one to carry out
accurate testing and, on the other hand, does not
increase too much the test suite, since the complete
search of all combinations of factors in real systems
requires too much expenditures.

In this paper, we consider methods for the creation
of test suites based on combinations of factor values,
which include all possible combinations of pairs, tri�
ples, or greater sets of values of various factors. Such
methods were successfully used in testing various sys�
tems (see works [2, 4–8]). They allow one to create
small, compared to the all�combinations based search,
test suites, which, at the same time, permit quality sys�
tem testing if the following conditions are satisfied:

• There are situations or actions on the system that
are described by many parameters or factors.

• Values of each parameter can be divided into sev�
eral classes such that all significant changes in the sys�
tem behavior occur when one of the parameters goes
from one class to another.

A Survey of Methods for Constructing Covering Arrays
V. V. Kuliamin and A. A. Petukhov

Institute for System Programming, Russian Academy of Sciences, ul. Solzhenitsyna 25, Moscow, 109004 Russia
e�mail: kuliamin@ispras.ru

Received October 3, 2010

Abstract—The paper presents a survey of methods for constructing covering arrays used in generation of tests
for interfaces with a great number of parameters. The application domain of these methods and algorithms
used in them are analyzed. Specific characteristics of the methods, including time complexity and estimates
of the required memory, are presented. Various—direct, recursive, optimization, genetic, and backtrack�
ing—algorithms used for constructing covering arrays are presented. Heuristics are presented that allow one
to reduce arrays without loss of completeness, and application domains of these heuristics are outlined.

DOI: 10.1134/S0361768811030029

122

PROGRAMMING AND COMPUTER SOFTWARE Vol. 37 No. 3 2011

KULIAMIN, PETUKHOV

• It is known that errors in the system behavior
occur basically due to combination of a few factors
determined by values of the parameters used.

If no additional information on relationship
between possible errors and possible parameter values
is available, these methods allow one to efficiently
construct test suites capable of testing a great variety of
situations. Otherwise, this information can be used for
constructing more compact targeted tests.

As an example, let us consider testing of the user’s
interface of the money transfer system WebMoney.
This interface can be accessed with the help of any
modern browser and various operating systems.
The most frequently used operation in this system is
money transfer from one purse to another by means of
the WM Keeper Light interface. This operation is per�
formed when paying mobile communication or Inter�
net, buying goods in an Internet store, and so on.
This operation may be affected by several factors.
The most significant among them are the sum of
money transferred, necessity of currency conversion,
type of the purse from which money are transferred,
method of user authentication in the WebMoney sys�
tem, and the browser and operating system on the user
side.

Possible values of these parameters chosen based
on the documentation on the WM Keeper Light inter�
face [9] are presented in Table 1.

Now, if we want to check all possible combinations
of factor values, we need 3 ⋅ 2 ⋅ 4 ⋅ 4 ⋅ 3 ⋅ 5 = 1440 tests.
This is not too much, of course; however, manual per�
forming of all of them will require great expenditures.

Results of empirical studies [7, 8, 10] show that the
majority of errors (up to 70%) in similar cases are
related to certain combinations of values of only two
parameters. In [11], it is shown that combinations of
pairs of factors in testing yield code coverage up to
80% under more or less reasonable selection of values
of individual parameters. In other words, if tests will
contain all possible combinations of pairs of parameter
values, the major part of errors will be revealed by these
tests. In so doing, all pairs of values of various factors
can be used in a small test suite. The minimal number
of such tests for the given example is equal to 20, since
there are 20 possible combinations of purse types and

operating systems. A suite consisting of this number of
tests can actually be constructed by using techniques
described in this work (an example is presented in
Table 2).

One can try to compose a test suite containing all
possible triples of parameter values, which is also not
too large. The above example will require not less than
80 = 5 ⋅ 4 ⋅ 4 tests, which is far less than 1440. This suite
can also be constructed by using methods described in
the paper. Such testing will allow one to detect more
errors than the previous one [7, 10].

This work surveys various methods of test construc�
tion that use pairs, triples, and greater sets of parame�
ter values. Section 2 contains a definition of covering
sets and basic results related to them. The survey itself
is presented in Section 3. The concluding section
summarizes the discussion.

2. THEORETICAL BACKGROUND

A test suite covering all pairs, triples, or greater sets
of possible values of system parameters is associated
with the mathematical concept of a covering array.

Suppose that there are k factors affecting system
operation, with the first factor taking n1 different val�
ues, the second factor taking n2 values, and so on.
A covering array of strength t is a matrix consisting of k
columns, whose ith column contains values of the ith
factor and any combination of possible values of any t
factors is contained in at least one of its rows.

Since factor values themselves are not important,
we denote them by numbers from 0 through ni – 1. The
set of numbers (t; k, n1, …, nk) is called a covering array
configuration, and the set of covering arrays with this
configuration is denoted as CA(t; k, n1, …, nk). The
formal definition is as follows: an integer matrix N × k
further denoted as A is a covering array from CA(t; n1,
…, nk) if and only if, ∀i ∈ [1..N], and j ∈ [1..k] Aij ∈
[0..nj – 1] & ∀j1, ..., jt ∈ [1..k] ∀v1 ∈ [0..nj1 – 1], vt ∈
[0..njt – 1] ∃i ∈ [1..N] ∀q ∈ [1..t] Aijq = vq.

Number t in configuration (t; k, n1, …, nk) is called
the array strength, k is the number of parameters or fac�
tors, and ni is the number of values of the ith parameter.
All numbers t, k, n1, ... nk are called characteristics of
the configuration. A covering array of strength t is also

Table 1. Parameter values for testing money transfer from one purse to another by means of the WM Keeper Light interface

Sum
transferred

Is currency
conversion
required?

Type of the purse
from which money

are transferred
Browser Authentication

method
Operating

system

<100 rub. Not required WMR rubles Internet Explorer Certificate X.509 Windows XP

100–10000 rub. Required WMZ US dollars Mozilla Firefox Enum�authorization Windows Vista

>10000 rub. WME euros Opera Login and password Debian Ubuntu

WMU grivnas Google Chrome Linux SUSE

Linux RedHat

PROGRAMMING AND COMPUTER SOFTWARE Vol. 37 No. 3 2011

A SURVEY OF METHODS FOR CONSTRUCTING COVERING ARRAYS 123

called sometimes a t�covering array. The number of
rows in a covering array is called the array size.

A covering array is said to be minimal if there does
not exist a covering array for the same configuration
that contains lesser number of rows. The size of the
minimal covering array for configuration (t; k, n1, ...,
nk) is denoted as CAN(t; k, n1, …, nk).

If the number of values of all factors coincide, i.e.,
n1 = n2 = … = nk = n, then the corresponding covering
array is said to be uniform. Its configuration is denoted
as (t; k, n); the set of such arrays is denoted as CA(t; k, n),
and the minimal size of such an array, as CAN(t; k, n).

If the numbers of values of several factors coincide,
i.e., n1 = n2 = … = np1, np1 + 1 = np1 + 2 = … = np2, and so
on, then the configuration of the covering array is writ�

ten by using the exponential notation CA(t; k, ,

…), where p1 + p2 + ... = k.

There exist more complicated covering arrays,
namely, variable strength covering arrays. These arrays
contain all combinations of pairs of factor values i1, …,
ip2 (p2 ≥ 2, p2 ≤ k); all combinations of triples of factor
values j1, ..., jp3 (p3 ≥ 3, p3 ≤ k), ...; and all combinations
of t factor values l1, …, lpt (pt ≥ t, pt ≤ k, t ≤ k), where ip,
jp, …, lp are numbers of factors from 1 through k (num�
bers denoted by different letters may coincide).
For example, if there are seven factors, we may be
interested in combinations of all pairs of values of
seven factors; triples of values of the first, second,

np1
p1

np2
p2

third, and fourth factors; fours of values of the third,
fourth, fifth, sixth, and seventh factors (see figure).

The formal definition of a variable strength array is
cumbersome and is not presented. Configurations of
such arrays are denoted as (t1, n1, ..., ; t2, j1, …, ;

… ; tm, l1, … ,), or (t1; k, n; t2, j1 … ; …; tm, l1, …,

) in the uniform case. The figure shows a part of

configuration (2; 7, 10; 3, 1, 2, 3, 4; 4, 3, 4, 5, 6, 7).
When describing tests with the help of covering

arrays, each row of the covering array corresponds to
one test, and the number in the jth column corre�
sponds to the number of class of values of the jth
parameter. This correspondence makes it possible to
use mathematical theory of covering arrays for con�
structing test suites. Since it is important not to have
too many classes, one should use minimal, or almost
minimal, covering arrays.

np1
jp2

lpm
jp2

lpm

Table 2. Minimal test suite for the WM Keeper Light interface

<100 rub. Not required WMR rubles Internet Explorer Certificate X.509 Windows XP

100–10000 rub. Required WMZ US dollars Mozilla Firefox Enum�authorization Windows XP

>10000 rub. Not required WME euros Opera Login and password Windows XP

100–10000 rub. Required WMU grivnas Google Chrome Certificate X.509 Windows XP

100–10000 rub. Not required WMR rubles Mozilla Firefox Login and password Windows Vista

>10000 rub. Not required WMZ US dollars Opera Certificate X.509 Windows Vista

<100 rub. Required WME euros Google Chrome Enum�authorization Windows Vista

>10000 rub. Not required WMU grivnas Internet Explorer Login and password Windows Vista

100–10000 rub. Required WMR rubles Opera Enum�authorization Debian Ubuntu

>10000 rub. Not required WMZ US dollars Google Chrome Login and password Debian Ubuntu

100–10000 rub. Not required WME euros Internet Explorer Enum�authorization Debian Ubuntu

<100 rub. Required WMU grivnas Mozilla Firefox Certificate X.509 Debian Ubuntu

>10000 rub. Not required WMR rubles Google Chrome Enum�authorization Linux SUSE

<100 rub. Required WMZ US dollars Internet Explorer Login and password Linux SUSE

>10000 rub. Required WME euros Mozilla Firefox Certificate X.509 Linux SUSE

<100 rub. Not required WMU grivnas Opera Enum�authorization Linux SUSE

100–10000 rub. Required WMR rubles Google Chrome Certificate X.509 Linux RedHat

>10000 rub. Not required WMZ US dollars Internet Explorer Login and password Linux RedHat

>10000 rub. Required WME euros Mozilla Firefox Certificate X.509 Linux RedHat

<100 rub. Not required WMU grivnas Opera Enum�authorization Linux RedHat

t = 2

t = 3 t = 4
1,2, 3,4, 5,6,7

Graphical representation of a variable strength configura�
tion.

124

PROGRAMMING AND COMPUTER SOFTWARE Vol. 37 No. 3 2011

KULIAMIN, PETUKHOV

Generally, no effective algorithms exist for con�
structing minimal covering arrays. The problem of
construction of a minimal covering array from CA(t; k, n)
is NP�complete, which was proved by reducing it to
that of coloring a graph using three colors [12]. The
particular problem of finding a minimal array from
CA(2; k, n) is also NP�complete, which was proved by
Lei and Tai [13] by reducing the problem to that of
covering graph nodes.

Size of the minimal covering arrays is known to sat�
isfy the following estimate [14]: CAN(t; k, n) ≤ (t –
1)log(k)/log(nt/(nt – 1))(1 + o(1)) as k ∞, which
yields CAN(t; k, n) ≤ (t – 1)ntlog(k)(1 + o(1)) for
nt ∞. There is also an evident lower bound
CAN(t; k, n) ≥ nt based on that the array should con�
tain all possible combinations of t values each of which
can be selected in n ways. As can be seen, as the num�
ber k of the parameters used grows, the size grows only
at logarithmic rate, which explains practical usefulness
of the covering arrays for constructing small quality
test suites.

Estimates of the covering array size for particular
cases, as well as tables that explicitly show sizes of suites
for certain configurations, can be found in [15–20].
In this work, these estimates are not presented in order
that not to overload the discussion.

Studies of the covering arrays are focused mainly
on search of the minimal test suites of various config�
urations and on the development of efficient (polyno�
mial) algorithms for constructing suites that are close
to minimal ones. There are many algorithms of this
kind; however, they either work with only special con�
figurations or, for the majority of configurations, pro�
duce suites that are much greater than the minimal
ones. The goal of this paper is to analyze the existing
methods for constructing covering arrays and reveal
domains of their possible application, where they con�
struct minimal, or almost minimal, test suites.

3. SURVEY OF ALGORITHMS
FOR CONSTRUCTING COVERING ARRAYS

In this survey, we tried to discuss all algorithms for
constructing covering arrays presented in works [15–19],
as well as a number of additional ones, such as the
algorithm based on combining blocks of uniform cov�
ering arrays and auxiliary suites [5], “double projec�
tion” technique [21], generalization of the IPO algo�
rithm to the case of strength t > 2 [22], heuristics for
optimization algorithms [8, 23–26], backtracking
algorithms [27], algorithm for optimizing a given cov�
ering array [28]. In addition, we present estimates of
memory required for these algorithms, which are lack�
ing in the above�listed surveys.

The existing algorithms for constructing covering
arrays can be classified as follows:

• Combinatorial (direct) algorithms use corre�
spondence between the covering arrays and other
combinatorial schemes (sets of Latin squares, group

orbits, and the like) in order to construct a covering
array when the corresponding scheme is sufficiently
simple.

• Recursive algorithms construct covering arrays
from the covering arrays for configurations with
smaller values of characteristics (for example, with
lesser number of factors or strength). Other combina�
torial schemes (orthogonal arrays, difference matri�
ces, etc.) can also be used.

• Reduction algorithms construct covering arrays
by modifying and reducing covering arrays for config�
urations with greater values of characteristics.

• Optimization algorithms consider construction
of a covering array as a problem of minimization of the
number of rows in the corresponding matrix and use
methods for finding extrema of this function (greedy
matrix construction, simulated annealing, genetic
algorithms, etc.).

• Backtracking algorithms successively search all
possible values in the cells of the suite for the given
configuration and given size of the suite. If the current
array is not covering, the algorithm returns one or sev�
eral steps back and makes another attempt with differ�
ent values. Such algorithms use certain rules for reduc�
ing the number of variants searched.

In what follows, when considering algorithms, we
will analyze the following characteristics.

• Class of array configurations that can be obtained
by means of the considered algorithm. Situations
where the resulting suite turns out minimal are noted.

• Class of the algorithm. The majority of the algo�
rithms discussed fall in one of the above�listed classes.
However, some of them can be used both for direct
construction of the desired array and for recursive
completion of the smaller one.

• Time complexity. In the case of recursive and
reduction algorithms, complexity of the algorithms
themselves will be estimated without taking into
account the way the initial arrays were constructed.

• Amount of the required memory.
• Possibility of constructing some parts of the array

independent from one another. Such a possibility is
useful for more efficient use of memory, since, in this
case, it is not required to store the entire array
obtained. Estimates of the required amount of mem�
ory in such a saving mode are presented.

• Possibility of taking into account constraints on
combinations of parameter values used in the array.
Such a possibility is important if not all possible com�
binations of parameter values of the interface under
test have sense or feasible.

In this survey, we do not prove theorems that state
that the arrays constructed in one way or another are
covering or minimal ones, since the proofs were given
in [15–20]. Moreover, we do not discuss algorithms for
constructing covering arrays for finite classes of con�
figurations, which can also be found in the above�
listed works.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 37 No. 3 2011

A SURVEY OF METHODS FOR CONSTRUCTING COVERING ARRAYS 125

If an algorithm does not rely on random choice of
some elements or numbers, the resulting array is deter�
mined unambiguously. However, any permutations of
columns or rows or permutations of values of any
parameter make it possible to obtain covering arrays
that are equivalent to the given one.

First, we consider algorithms for constructing uni�
form arrays and, then, those for constructing nonuni�
form or variable strength arrays.

3.1. Algorithms for Constructing Uniform Covering
Arrays

Direct and recursive methods for constructing uni�
form covering arrays with equal numbers of values of
all parameters are most well studied [16, 18].

3.1.1. “Boolean” algorithm for constructing cover�
ing arrays [19, 29, 30]. This combinatorial�type algo�
rithm constructs covering arrays from CA(2; k, 2) for
any values of k ≥ 1.

Brief description of the algorithm.
1. Select the least N satisfying the condition k ≤

. Here, ⎡x⎤ is the least integer greater than or

equal to x, and is the binomial coefficient. This N is
equal to the size of the resulting array.

2. Set all elements of the first row of the array equal
to zero.

3. The remaining N – 1 rows are constructed by
columns, which are taken to be all possible sequences
of ⎡N/2⎤ ones and ⎡N/2⎤ – 1 zeros.

It is easy to verify that the array constructed in this
way is actually a covering one. The proof of its mini�
mality is given in [19].

The algorithm requires O(k log2k) memory and has
time complexity O(k).

3.1.2. “Affine” algorithm for constructing covering
arrays [5, 19]. This combinatorial�type algorithm
constructs covering arrays from CA(t; n + 1, n) for n
equal to a power of a prime number, n = pk, k ≥ 1, and
any values of t ≤ n + 1. For t = 3 and n = 2k, an array
from CA(t; n + 2, n) is obtained.

Brief description of the algorithm.
1. For each power of a prime number, n = pk, there

exists a finite field with this number of elements, which
is called Galois field GF(pk) [31]. A table of elements
of field GF(pk) is constructed as follows.

2. Each row of the table is coded by means of a
sequence a0a1...at – 1, where ai takes all possible values
from field GF(pk). The total number of rows is nt.

3. The first column in the row with the code
a0a1...at – 1 contains the value equal to a0. To the first
column, number ∞ is assigned.

4. The second column in the row with the code
a0a1...at – 1 contains the value equal to at – 1. To the sec�
ond column, number 0 is assigned.

CN 1–
N/2

Cq
r

5. The remaining columns, from the third through
(n + 1)th with numbers m = 1...(n – 1), are con�
structed such that the intersection of the row with the
code a0a1...at – 1 and column with number m contains

the value calculated by the formula in the

arithmetic of GF(pk).
6. For strength t = 3 and p = 2, one more column

consisting of values a1 is added to the table.
The table constructed in this way is a minimal cov�

ering array from CA(t; pk + 1, pk) or CA(3; 2k + 2, 2k),
CAN(t; pk + 1, pk) = ptk, CAN(3; 2k + 2, 2k) = 23k (the
proof is given in [19]).

Time complexity of the algorithm is estimated as
O(nt), and the required memory, as O(n), since the
array can be constructed row by row. However, the
implementation will require modeling of arithmetic of
polynomials in the Galois field, i.e., creation of the
multiplication and addition tables. If irreducible poly�
nomials of the corresponding degree are known, then

creation of the tables requires O() operations and

O() memory.

3.1.3. Algorithm based on group actions [17, 32–35].
This combinatorial�type algorithm constructs cover�
ing arrays for several different configurations described
below.

Brief description of the algorithm.
1. An initial array is selected with the number of

columns equal to the number of parameters in the
configuration. Let the number of columns in it be
equal to Nstart.

2. A group of permutations of a set of possible
parameter values is selected, which will act on the ini�
tial array as well. Let the order of the group be n.

3. Action of each of n elements of the group on the
initial array results in n arrays equal in size to the initial
one. One of these arrays—the result of action of the
group unity—is the initial array.

4. The arrays obtained are supplemented to one
another from the bottom.

5. In a number of cases, an additional array with the
number of columns equal to the number of parameters
in the configuration is added in the very end. Let the
number of rows in it be Nend.

6. As a result, the desired array with the number of
rows equal to (nNstart + Nend) is obtained.

Selection of the initial array, group, and additional
array.

Configurations (3; 2k, q + 1) and their particular
case (3; 2k, k) [34], where k > 2, q ≥ k – 1, and q is a
power of a prime number. The size of the desired array
is (2k – 1)(q3 – q) + q + 1. The algorithm is efficient if
2k is a small number, since the array size in this case
tends to O(q3) and the minimal possible array has size
(q + 1)3. However, if 2k is close to or greater than q,
then the array size is O(q4), which is greater than that
of the minimal array by an order of magnitude.

Σi 0=
t 1– aim

i

logp
4n

logp
3n

126

PROGRAMMING AND COMPUTER SOFTWARE Vol. 37 No. 3 2011

KULIAMIN, PETUKHOV

1. For a complete graph with 2k vertices, there
exists 1�factorization into 2k – 1 graphs [36].

2. In each factorization, 2k vertices are numbered
from 0 through 2k – 1, and k edges are numbered from
0 through k – 1.

3. Vertices of the complete graph are made to cor�
respond to columns of the initial array, and graphs in
the factorization, to rows. Thus, the initial array will
consist of 2k columns and 2k – 1 rows.

4. Turn successively from one factorization graph
to another and form rows of the initial array as follows:
to the column with the number of vertex i, the number
of the edge that is incidental to this vertex in the graph
is placed.

5. The initial array A can also be specified as fol�
lows:

Ai, j = 0, 0 ≤ i ≤ 2k – 2, j = 0;
Ai, j = |i – j + 1|, |i – j + 1| < k, j ≠ 0;

Ai, j = 2k – 1 – |i – j + 1|,
k ≤ |i – j + 1| < 2k – 1, j ≠ 0.

6. Consider the projective group PGL(q) = PGL(2,
GF(q) over the finite field GF(q). This group acts on
elements of filed GF(q) by permutations. Its order is
equal to q3 – q. Permutations corresponding to the
elements of this group can be calculated by means of
O(q3) operations.

7. The additional array is taken to be array C, where
Cij = i, 0 ≤ i ≤ 2k – 1, 0 ≤ j ≤ q.

The table obtained in this way is a covering array,
which is proved in [34]. However, this array is usually
not minimal.

Time complexity of the algorithm, together with find�
ing elements of group PGL(q) – O(2k((2k – 1)(q3 – q) +
q + 1) + q3) = O(k2q3) and the required memory
O(2k(2k – 1) + q4 – q2) = O(k2 + q4), since the array
can be constructed row by row, but the initial array and
elements of group PGL(q) are to be permanently kept
in the memory.

Configuration (2; 4, q), where q ≡ 2(mod 4). The
size of the constructed array is (q + 1)q [35].

1. For the initial array, the transposed difference
covering array DCA(4; q + 1; q) is selected, which is
defined as follows. Let (G, *) be a group of order q.
Then, DCA(k; n; q) is a matrix A with elements aij, 0 ≤
i ≤ k – 1, 0 ≤ j ≤ n – 1 belonging to G such that, for any
two different rows t and h, 0 ≤ t < h ≤ k – 1, each ele�
ment of G can be found in the difference vector Δth =

{dhj* , 0 ≤ j ≤ n – 1} at least once. Methods of find�
ing DCA(4; q + 1; q), where q ≡ 2 (mod 4), are
described in [35].

2. The group is selected to be the ring of residuals Zq
if q ≡ 6 (mod 12) or Z2 + GF(q1) + GF(q2) + ... +
GF(qt) if q ≡ 2 or 10 (mod 12), where q = 2u, u ≥ 7, and
u = q1q2…qt is factorization into powers of prime num�
bers.

3. The additional array is lacking.

dtj
1–

The table obtained in this way is a covering array,
which is proved in [35]. However, this array is not
always minimal.

Time complexity of the algorithm is O(4(q + 1)q) =
O(q2), and the required memory is O(4(q + 1) + q2) =
O(q2), since the array can be constructed row by row,
but the initial array and elements of the group are to be
permanently kept in the memory.

Configurations (2; l, g) and (2; l + 1, g) of size l(g –
1) + 1 and (l + 1)(g – 1) + 1, respectively, where the
finite number of pairs (g, l) for configurations of each
kind can be found in works [17, 34]. In addition to pair
(g, l), vector (v0, …, vl–1), vi ∈ Zg – 1 ∪ {∞}, v0 = ∞, is
required, which is a cover starter for the first configu�
ration and a distinct cover starter for the second con�
figuration.

Let set Ds = {(vj – vi) (mod (g – 1)): j – i = s (mod l),
vi ≠ ∞, vj ≠ ∞} be given. When Ds = Zg – 1 for all 1 ≤ s < l,
then vector (v0, …, vl – 1) is called a (g, l) cover starter.
When Zg – 1\{0} ⊆ Ds for all 1 ≤ s < l and {v1, …, vl – 1 } =
Zg – 1, then vector (v0, …, vl – 1) is called a distinct (g, l)
cover starter [17]. These vectors are found by means of
complete search [33] or heuristic search [34].

1. The matrix of cyclic shifts of the initial vector is
composed. The vector is cyclically shifted once. As a
result, a square l�by�l diagonal matrix is obtained. This
matrix is taken to be the initial one for configuration
(2; l, g). The same matrix augmented by a column of
zero elements is taken to the initial matrix for config�
uration (2; l + 1, g).

2. The group is taken to be the ring of residuals Zg – 1.
In so doing, the group does not act on symbols ∞.

3. The additional array is the row consisting of sym�
bols ∞.

4. All symbols ∞ are replaced by number g.
The table obtained in this way is a covering array

but not a minimal one [17].
If the cover starter is known, time complexity of the

algorithm is O(l(l(g – 1) + 1)) = O(l2g), and the
required memory is O(l + (g – 1)g) = O(l + g2), since
the array can be constructed row by row, but the cover
starter and elements of the group are to be perma�
nently kept in the memory.

3.1.4. Algorithm reducing array strength [34]. This
reduction algorithm constructs an array A belonging to
CA(t – 1; k – 1, n) from an array B belonging to CA(t;
k, n) of size N. The size of array A is equal to N/n.
Using results of the previous section, one can con�
struct an array belonging to CA(2; 2k – 1, q + 1) by
means of the initial CA(3; 2k, q + 1), where k > 2, q ≥
k – 1, and q is a power of a prime number. The size of
the resulting array is equal to ((2k – 1)(q3 – q) + q +
1)/(q + 1) = (2k – 1)q(q – 1) + 1.

Brief description of the algorithm.
1. Select the jth column of the initial array B.
2. Select one admissible value of parameters.
3. Retain only those rows in the initial array that

contain the selected value in the jth column.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 37 No. 3 2011

A SURVEY OF METHODS FOR CONSTRUCTING COVERING ARRAYS 127

4. Remove the jth column.
The table obtained is a covering array, which is

proved in [34]. However, this array may not be minimal
even if the initial array is minimal. Time complexity of
the algorithm is О(Nk), and the required memory has
the same estimate, since the array can be constructed
row by row, but the initial array is to be permanently
kept in the memory.

3.1.5. Multiplicative algorithm [17, 19]. This
recursive algorithm constructs a covering array
belonging to CA(t; k, n1n2) from a covering array
belonging to CA(t; k, n1) and to CA(t; k, n2). The size
of the resulting array is equal to the product of sizes of
the initial arrays. If the number of parameters k is
great, this algorithm constructs arrays that are far from
minimal ones.

Brief description of the algorithm.
1. Suppose that there are two covering arrays: A

from CA(t; k, n1) and B from CA(t; k, n2).
2. Let us denote elements of these two arrays as aij

and blj. These arrays have the same number of columns
and, possibly, different numbers of rows.

3. Any number from 0 through (n1n2 – 1) can
unambiguously be represented as n2i + m, where i lies
between 0 and (n1 – 1), and m, between 0 and (n2 – 1).
Thus, there is one�to�one correspondence between
indices of rows of the table of the array obtained and
pairs of indices of rows of two initial tables (i, m),
where i is the index of rows of the first array, and m is
the index of rows of the second array.

4. Elements of this table can be constructed by the
formula x(i, m)j = n2aij + bmj.

The table obtained in this way is a covering array
with k parameters and n1n2 values for strength t; the
proof is given in [19]. However, the array constructed
in this way may not be minimal even if the initial arrays
are minimal. The counterexamples are as follows (see
[37]): there exists a covering array for configuration
(2; 6, 10) with the number of rows equal to 102,
whereas the method described constructs a covering
array for configuration (2; 6, 10) with 150 rows using
arrays from CA(2; 6, 2) (CAN(2; 6, 2) = 6) and CA(2;
6, 5) (CAN(2; 6, 5) = 25) as the initial minimal arrays.

Time complexity of the algorithm is O(k(1 + N1 + N2)),
where N1 is the number of rows in the first initial array
and N2 is the number of rows in the second array, and
the required memory has the same estimate, since the
array can be constructed row by row, but the initial
arrays are to be permanently kept in the memory.

3.1.6. Construction of uniform covering arrays of
strength two with the use of recursive constructs [17,
19, 33]. Let us introduce several auxiliary definitions
[33].

A partitioned covering array PCA(N; 2; (k1, k2), n) is
a covering array of size N from CA(2; k1 + k2, n) that
admits the following partitioning (with regard to the
fact that the rows and columns can interchange places):

Here, A1 is a matrix of size N – n by k1, A2 is a
matrix of size N – n by k2, P is a matrix of size n by k1
each column of which contains all number from 0
through n – 1, and X is a matrix of size k2 by n. Without
loss of generality, we may assume that P is matrix D the
ith column of which contains value i, 0 ≤ i ≤ n – 1.
Below is an example of PCA(15; 2; (14, 6), 3):

Any covering array of size N from CA(2; k, n) can
be represented in the form of PCA(N; 2; (1, k – 1), n).

SCA(N; 2; (k1, k2), n) is a covering array of size N
from CA(2; k1 + k2, n) in which, for all i, 0 ≤ i ≤ n – 1,
the first k1 values in the row with number N – n + i are
equal to i and the last k2 values are equal to zero. For
example, an array from CA(2; k, n) can be represented
as SCA(n2; 2; (n, 1), n) if n is a power of a prime num�
ber. SCA is a particular case of PCA where all elements
X are equal to zero.

This recursive algorithm constructs covering arrays
for configurations of several types using recursive
schemes. Configurations for which the algorithm
works are (everywhere, r ≥ 1 and n is a power of a prime
number if not specified otherwise) SCA (or PCA)(N +
r(n2 – n); 2; (k1n

r, rk1n
r – 1 + k2n

r), n) (i.e., an array
from CA(2; k1n

r + rk1n
r – 1 + k2n

r, n) with the number
of rows N + r(n2 – n)) using initial SCA (respectively,
PCA)(N; 2; (k1, k2), n). Using the same initial SCA (or
PCA) and having performed additional operations,
one can obtain an array for the greater number of
parameters: SCA (or PCA) (N + r(n2 – n); 2; (n(k1 +
k2)Dr, n + k1Dr – 1, n, n(k1 + k2)Dr – 1, n + k1Dr – 2, n), n),

where r ≥ 2, Dr, t = , and is the

number of combinations of i elements taken r at a time.
This will be an array from CA(2; n(k1 + k2)Dr + 1, n +
k1Dr, n, n) with the number of rows N + r(n2 – n).
Numbers N, k1, k2, and n take the following values:

(i) k1 = 1, k2 = m – 1, and N is the number of rows
in the initial covering array from CA(2; m, n) obtained
by another method and represented in the form of
PCA(N; 2; (1, m – 1), n).

(ii) k1 = n, k2 = 1, N = n2, initial SCA(n2; 2; (n, 1),
n) is an array from CA(2; n + 1, n) with the number of
rows equal to n2 obtained by means of the algorithm
described in Section 3.1.2.

(iii) k1 = 1, k2 = 1, N = (l + 1)(n – 1) + 1, for num�
bers n and l, there exists a distinct (n, l) cover starter
(see Section 3.1.3). The initial SCA is an array from
CA(2; l + 1, n) with the number of rows equal to (l +
1)(n – 1) + 1. This array is obtained by means of the
algorithm described in Section 3.1.3 and according to
[33] the array is represented in the form of SCA((l +
1)(n – 1) + 1; 2; (l, 1), n).

(iv) n = 3, (k1 = 14, k2 = 1, N = 15), (k1 = 60, k2 =
14, N = 21), (k1 = 220, k2 = 114, N = 27), (k1 = 1092,
k2 = 220, N = 33). The initial SCAs are obtained by
heuristic methods, which can be found in [33]. Any
initial SCA(N; 2; (k1, k2), n), where n is a power of a

Ci 1–
r i– tr i–

i 1=
r 1+()/2

∑ Ci
r

128

PROGRAMMING AND COMPUTER SOFTWARE Vol. 37 No. 3 2011

KULIAMIN, PETUKHOV

prime number, that are close to minimal ones are suit�
able for the method.

Brief description of the algorithm.
1. Suppose that there is an initial SCA(or PCA)(N; 2;

(k1, k2), n) with partitioning A1, A2, D, and X (see Table 3).
2. Suppose that there is an auxiliary SCA(or

PCA)(M; 2; (l1, l2), n) with partitioning B1, B2, D', and O'.
3. Joining of matrix A of size N by k and matrix B of

size M by l (A ⊗ B) is matrix C of size N + M by kl the
elements of which are defined as follows: Ci, (f – 1)k + g =
Ai, g, 1 ≤ i ≤ N, 1 ≤ f ≤ l, 1 ≤ g ≤ k, and CN + i, (f – 1)k + g =
Bi, f, 1 ≤ i ≤ M, 1 ≤ f ≤ l, 1 ≤ g ≤ k.

4. The resulting SCA(or PCA)(N + M – n; 2; (k1l1,
k1l2 + k2l1), n) is obtained from the initial SCA (or
PCA) and auxiliary SCA by joining horizontally
matrices A1 ⊗ B1, A2 ⊗ B1, and A1 ⊗ B2. Then, the
matrix composed of the horizontal joining of matrices
D, k1X, and O' of appropriate sizes, is joined to the bot�
tom, where k1X is matrix X repeated k1 times (see Table 5).

5. Additional actions: if B1 contains a submatrix n ×
η (η × n) in which all numbers from 0 through n – 1 in
each row are different, then the rows and columns in
the resulting matrix can be permuted such that
SCA(or PCA)(N + M – n; 2; (η(k1 + k2), (l1 – η)(k1 +

k2) + k1l2), n) is obtained. Altogether, nη(k1 + k2) per�
mutations will be required.

The table obtained is a covering array, which is
proved in [33]. However, this array may not be minimal
even if the initial arrays are minimal [33].

Time complexity of the algorithm without additional
actions is O((k1l1 + k1l2 + k2l1)(N + M – n)) and with
additional actions is O((k1l1 + k1l2 + k2l1)(N + M – n) +
nη(k1 + k2)). The required memory without additional
actions is O((k1 + k2)N + (l2 + l1)M), since the array
can be constructed row by row, but the initial and aux�
iliary arrays are to be permanently kept in the memory.

To obtain arrays for configurations described
above, for the initial SCA (or PCA), the array specified
in the corresponding item (i)–(iv) is selected, and for
the auxiliary array, an array from CA(2; n + 1, n) is
taken, where n is a power of a prime number, with n2

rows, which is SCA(n2; 2; (n, 1), n). Such an array can
be obtained by means of the algorithm described in
Section 3.1.2. The construction is repeated r times.
For the initial array, the array obtained on the previous
step is taken, and for the auxiliary array, the same aux�
iliary array SCA(n2; 2; (n, 1), n) is selected. Time com�
plexity for r iterations is O((N + i(n2 – n))(k1n

i +

ik1n
i – 1 + k2n

i))) without additional actions and

O((N + i(n2 – n))(n(k1 + k2)Di + 1, n + k1Di, n)) +

n2(n(k1 + k2)Di, n + k1Di – 1, n))) with additional

actions. The required memory is obtained by adding sizes
of the greatest initial array and the auxiliary array: O((N +
(r – 1)(n2 – n))(k1n

r – 1 + (r – 1)k1n
r – 2 + k2n

r – 1) + (n +
1)n2) without additional actions and O((N + (r – 1)(n2 –
n))(n(k1 + k2)Dr, n + k1Dr – 1, n) + (n + 1)n2) with addi�
tional actions.

In [33], a method based on binary codes is
described, by means of which one can construct
SCA(n2 + r(n2 – n); 2; (nr + 1, (r + 1 + s)nr + 1 – s), n),

i.e., arrays from CA(2; nr + 1 + nr + 1 – s, n) with the

number of rows equal to n2 + r(n2 – n), where r ≥ s ≥ 1
and n is a power of a prime number. However, it is not
difficult to check that, in the majority of cases, by
means of the methods described, one can obtain SCA
of the same size for configurations in which number k1

and sum k1 + k2 are greater than or equal to those in
the SCA constructed by this method.

3.1.7. Construction of uniform covering arrays of
strength three with the use of ordered design [17]. The

ordered design ODλ(t, k, v) is a matrix of size λ × k
with elements from 0 through v such that (1) each col�
umn contains v different values and (2) every t col�
umns contain exactly λ identical rows such that values
in different columns are different.

If λ = 1, then the corresponding ordered designs are
denoted simply as OD(t, k, v). If q is a power of a prime
number, then there exists OD(3, q + 1, q + 1) [17].

(
i 1=
r

∑

(
i 1=
r

∑
(

i 1=
r 1–

∑

Cs
r 1+

Ct
vt!

Table 3. Partitioned covering array PCA

A1 A2

P X

Table 4. PCA(15; 2; (14, 6) [35]

0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1

0 0 1 1 0 1 2 2 2 2 2 2 2 2 0 0 0 2 2 2

0 2 2 2 0 1 0 0 0 1 2 0 1 1 2 2 2 0 2 1

1 1 1 0 1 0 1 1 0 0 2 2 2 1 2 2 2 2 1 0

1 2 0 2 1 0 0 2 2 1 0 1 0 2 0 1 2 2 2 1

1 2 2 1 2 0 2 1 1 0 1 0 2 0 1 0 2 1 2 1

2 0 0 1 2 2 2 2 0 2 2 1 0 1 2 2 2 1 0 2

2 1 2 0 2 2 1 2 2 0 1 0 1 2 0 2 1 2 2 0

2 1 1 2 0 2 0 1 1 2 1 2 0 2 2 0 1 1 0 1

2 1 1 2 2 1 2 0 2 1 0 1 2 0 2 1 0 1 0 0

1 2 2 1 1 2 1 0 1 2 0 2 1 0 1 2 0 2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 2 1 0 1 0 2 2 1 2 2 0 1 0 1 1 1 0 1 2

1 0 2 2 0 1 1 1 2 0 0 1 0 1 1 1 1 0 1 2

0 1 0 1 2 2 0 0 0 1 1 2 2 2 1 1 1 0 1 2

Table 5. Construction of the resulting SCA (or PCA)

A1 ⊗ B1 A2 ⊗ B1 A1 ⊗ B2

D k1X O'

PROGRAMMING AND COMPUTER SOFTWARE Vol. 37 No. 3 2011

A SURVEY OF METHODS FOR CONSTRUCTING COVERING ARRAYS 129

This recursive algorithm constructs a covering array
from CA(3; q + 1, q + 1) using OD(3, q + 1, q + 1) with
the number of rows equal to q3 – q (for q equal to a
power of a prime number) and covering array A from
CA(3; q + 1, 2) with N rows. The number of rows in
the resulting array is equal to q3 – q + Nq(q + 1)/2 –
(q2 – 1), which is less than that in the array constructed
by the algorithm considered in Section 3.1.3 with a
wider application domain.

Brief description of the algorithm.

1. From array A, we obtain another – 1 = q(q +
1)/2 – 1 versions of this array by replacing values of
elements 0 and 1 with values lying between 0 and q
having searched all possible combinations of pairs of
different values except for already available 0 and 1.

2. The arrays obtained on the previous step (plus
array A) are joined to one another from the bottom not
including rows of the form (х, х, ..., х), where x lies
between 0 and q. As a result, an array with Nq(q + 1)/2 –
q(q + 1) rows is obtained.

3. The array obtained on the previous step is joined
from the bottom to matrix OD(3, q + 1, q + 1).

4. q + 1 rows of the form (х, х, ..., х), where x lies
between 0 and q, are added.

The table obtained in this way is a covering (not
necessarily minimal) array from CA(3, q + 1, q + 1) for
q equal to a power of a prime number. The proof can
be found in [17].

Time complexity of the algorithm is estimated as
O((q3 – q + Nq(q + 1)/2 – (q2 – 1))(q + 1)) = O(q4 +
Nq3), and the required memory, as O((q3 – q + N)(q +
1)) = O(q4 + Nq), since the array can be constructed
row by row, but the initial array and matrix OD(3, q + 1,
q + 1) are to be permanently kept in the memory.

3.1.8. Construction of uniform covering arrays with
the use of perfect hash families [17, 32]. Let us intro�
duce several auxiliary definitions.

A perfect hash family PHF(N, t; k, m) is a set of N(k,
m)�hash functions (functions specifying mappings
from a set K of cardinality k to a set M of cardinality m,
which are denoted as hj) such that, for any subset X of
set K of cardinality t, there exists an injective (perfect)
hash function hj on X. This family can be specified by
means of a matrix of size k by N the element [i, j] of
which is the value of function hj on the ith element of
set K. Any matrix of size k by N any submatrix of which
of size t × N contains a row of length t all elements of
which are different specifies some perfect hash family.

Difference matrix D(k, n; λ) is a matrix of size n × kλ
with elements from Zk in which vector of difference of
any pair of rows contains each element of field Zk exactly
λ times. For example, if GCD((n – 1)!, k) = 1, then
matrix Dij = ij mod k is the difference matrix D(k, n; 1).

This recursive algorithm constructs a covering array
from CA(t; k2p, n) by means of an initial array of size N
from CA(t; k, n) if GCD((t – 1)t/2, k) = 1. The size of
the resulting array is N((t – 1)t/2 + 1)p. This algorithm

C2
q 1+

makes it possible also to construct PHF(N((t – 1)t/2 + 1)p,
t; k2p, n) from PHF(N, t; k, n).

Brief description of the algorithm.
1. Let A be an initial PHF(N, t; k, n) matrix (or an

initial transposed array of size N from CA(t; k, n)).
2. Let D be a difference matrix D(k, (t – 1)t/2 + 1; 1),

Dij = ij mod k, 0 ≤ i ≤ k – 1, 0 ≤ j ≤ (t – 1)t/2.
3. Let Ax be a matrix of the same size as A such that

 = A(i + x)j, 0 ≤ x, i ≤ k – 1, 0 ≤ j ≤ N – 1.

4. The resulting matrix is composed from matrices
Bij =ADij, 0 ≤ i ≤ k – 1, 0 ≤ j ≤ (t – 1)t/2, as shown in
Table 6. This will be PHF(N((t – 1)t/2 + 1), t; k2, m)
if the initial matrix was a covering array. The proof can
be fond in [17]. The constructed array is not necessar�
ily minimal.

5. Applying the algorithm p times, we can obtain a
PHF or a covering array for the above�specified con�
figurations.

Time complexity of the algorithm is estimated as
O(kp((t – 1)t/2 + 1) + Nk2p((t – 1)t/2 + 1)p) =
O(Nk2pt2p), and the required memory, as O(kp((t –
1)t/2 + 1 + N)) = O(kp(t2 + N)), since the array can be
constructed row by row, but the initial array and matrix
D(kp, (t – 1)t/2 + 1; 1) are to be permanently kept in
the memory.

There is an algorithm [32] that constructs an array
from CA(t; k, n) by means of PHF(N1, t; k, m) and an
initial array of size N2 from CA(t; m, n). The size of the
resulting array is equal to N1N2.

Brief description of the algorithm.
1. Search all rows of the initial covering array (let us

denote this matrix as CA) from 0 through N2 – 1. Let
the row selected have number j.

2. Search all columns of the initial PHF from 0
through N1 – 1. Let the column selected have number l.

3. Search all values i from 0 through k – 1 and form
a row of length k with double index (j, l) as follows: the
ith element of the row is element CAxj, where x is ele�
ment PHFil.

4. The resulting array has N1N2 rows and k col�
umns.

The table obtained in this way is a covering array.
The proof can be found in [17]. However, the con�
structed array is not minimal.

Time complexity of the algorithm is O(N1N2k), and
the required memory is O(N1k + N2m), since the array
can be constructed row by row, but the initial array and

Aij
x

Table 6. Construction of the resulting matrix with the use of
a difference matrix

B0, 0 B0, 1 … B0, (t – 1)t/2

B1, 0 B1, 1 … B1, (t – 1)t/2

… … … …

Bk – 1, 0 Bk – 1, 1 … Bk – 1, (t – 1)t/2

130

PROGRAMMING AND COMPUTER SOFTWARE Vol. 37 No. 3 2011

KULIAMIN, PETUKHOV

matrix PHF(N1, t; k, m) are to be permanently kept in
the memory.

Using the first recursive scheme, one can obtain
arrays from CA(3; (2v – 1)2^j, v) with ((2v – 1)(q3 –
q) + v)4j rows, where v > 2, v ≡ 0, 1 mod 3, q ≥ v – 1 is
a power of a prime number, and j is any integer, as well
as an array from CA(3; (2v – 3)2^j, v) with ((2v –
1)(q3 – q) + v)4 j rows, where v > 2, v ≡ 2 mod 3, and
q is subject to the same constraints. To this end, for the
initial array, one should take an array from CA(3; 2v, v)
with (2v – 1)(q3 – q) + v rows obtained by means of
the method described in Section 3.1.3. If v ≡ 0, 1 mod 3,
then, in order that GCD((t – 1)t/2, k) = GCD(3, k) be
equal to 1 (as required in the scheme), it is necessary that
k = 2v – 1; if v ≡ 2 mod 3, v > 2, then k = 2v – 3. Using
this scheme, one can also obtain the required PHFs for
the second recursive scheme.

3.1.9. Construction of uniform covering arrays of
strength greater than two with the use of recursive con�
structs (the Roux theorem) [15–17, 32, 38–40]. This
recursive algorithm constructs a covering array from
CA(3; 2k, n) using a covering array from CA(3; k, n)
and a covering array from CA(2; k, n).

If the numbers of rows in the first and second initial
arrays are equal to N3 and N2, respectively, then, in the
resulting array, it is equal to N3 + (n – 1)N2. For cardi�
nality greater than 3, this algorithm constructs a cov�
ering array from CA(t; 2k, n) using t – 1 covering arrays
form CA(t; k, n), …, CA(2; k, n).

Brief description of the algorithm for t = 3.
1. Suppose that there is an array CA(3; k, n) with N3

rows. Let us denote its elements as (1 ≤ i ≤ N3, 1 ≤
j ≤ k).

2. Suppose that there is an array CA(2; k, n) with N2

rows. Let us denote its elements as (1 ≤ i ≤ N2, 1 ≤
j ≤ k).

3. The first N3 rows of the resulting array (which are
denoted as Ci, j) consisting of 2k columns are con�
structed as follows:

3.1. Ci, j = , where 1 ≤ i ≤ N3, 1 ≤ j ≤ k;

3.2. Ci, j = , where 1 ≤ i ≤ N3, k + 1 ≤ j ≤ 2k.

4. Rows with numbers from N3 + 1 through N3 +
(n – 1)N2 are constructed as follows:

4.1. Ci, j = , where N3 + 1 ≤ i ≤ N3 +

(n – 1)N2, 1 ≤ j ≤ k;

4.2. Ci, j = (+n ((i – N3 –

1)divN2 + 1)), where N3 + 1 ≤ i ≤ N3 + (n – 1)N2, k +
1 ≤ j ≤ 2k, and +n is the addition modulo n.

The array obtained in this way is a covering array
(see proof in [17]). However, it is not necessarily min�
imal even if the initial arrays are minimal (see [37]): for
configuration (3; 18, 13), there exists an array of size
3912, whereas the method described constructs the

Ai j,
3

Ai j,
2

Ai j,
3

Ai j,
3

A i N3– 1–()mod N2 1+ j,
2

A i N3– 1–()mod N2 1+ j k–,

2

covering array of size 4225 using the minimal arrays
from CA(3; 9, 13) (CAN(3; 9, 13) = 2197) and CA(2;
9, 13) (CAN(2; 9, 13) = 169) as the initial ones.

Brief description of the algorithm for t ≥ 4.
1. Suppose that there exist arrays At from CA(t; k, n)

with Nt rows, …, A2 from CA(2; k, n) with N2 rows.

2. Let denote the matrix of size NiNj by k
obtained from Ai by repeating each row Nj times,
where 2 ≤ i, j ≤ t – 2, and i + j = t.

3. Let denote the matrix of size NiNj by k
obtained by repeating matrix AjNi times, where 2 ≤ i,
j ≤ t – 2, and i + j = t.

4. Let Ei denote the matrix of size NiNj by 2k, where

the first k columns are matrix , and the next k

columns are matrix , 2 ≤ i, j ≤ t – 2.

5. The first Nt + (n – 1)Nt – 1 rows of the resulting
array are constructed similar to items 3 and 4 of the
algorithm for t = 3, with the initial arrays being matri�
ces At and At – 1.

6. The remaining rows are obtained by joining
matrices Et – 2, …, E2 to the array obtained on step 5
from the bottom.

The array obtained in this way is a covering array (see
proof in [15]). However, it is not necessarily minimal
even if the initial arrays are minimal. A counterexample
is constructed similar to that in the case of t = 3.

Time complexity of the algorithm is O(2kNmax(n +

Nmax(t – 3))), and the required memory is O(2k)
(where Nmax is the size of the largest initial array (Nt)),
since the array can be constructed row by row, but the
initial arrays are to be permanently kept in the memory.

There is no opportunity to specify all constraints on
all possible combinations of parameter values for all
algorithms presented in this section.

3.2. Methods for Constructing Nonuniform Covering
Arrays and Variable Strength Covering Arrays

3.2.1. Construction of nonuniform covering arrays
of fixed strength by means of uniform covering arrays of
similar configuration [16]. This reduction algorithm
constructs a nonuniform covering array by means of a
uniform covering array of similar configuration. For
example, it constructs an array from CA(2; 6, 3, 2, 5,
4, 3, 5) by means of an initial array from CA(2; 6, 5, 5,
5, 5, 5, 5) (i.e., CA(2; 6, 5)). Further study of classes of
particular cases where this algorithm yields good
results is required. Some thoughts on this subject can
be found in [16].

Brief description of the algorithm.
1. Suppose that it is required to construct a nonuni�

form covering array A from CA(t; k, n1, ..., nk).
2. Suppose that there is a uniform covering array B

from CA(t; k, n) constructed by another method,

Bij
N

Cji
N

Bi
Nt i–

Ct i–
Ni

Nmax
2

PROGRAMMING AND COMPUTER SOFTWARE Vol. 37 No. 3 2011

A SURVEY OF METHODS FOR CONSTRUCTING COVERING ARRAYS 131

where n is selected such that array B certainly contains
all rows of array A (the simplest selection is n =
max(n1, ..., nk)).

3. Replace values from B that do not belong to the
domain of admissible values of A by those that do
belong to the domain of admissible values of A.

4. From the array obtained on step 3, delete all
redundant rows so that the resulting array is still a cov�
ering one. As a result, we obtain a nonuniform cover�
ing array from CA(t; k, n1, ..., nk).

The resulting covering array depends on the way the
redundant values are deleted; i.e., it seems likely that
covering arrays constructed for one and the same con�
figuration will be different. The minimality of the array
constructed in this way is not guaranteed; however, it
can be estimated how close the constructed array to a
minimal one is [16]. The algorithm requires detailed
analysis of the covering array configuration and needs
nontrivial heuristics. Time complexity and the required
memory depend on the particular cases. The array con�
struction cannot be optimized by specifying constraints
on possible combinations of values, although such con�
straints can be introduced. The amount of the required
memory cannot be optimized either, since, in any case,
the entire initial array is to be kept in the memory.

3.2.2. “Double projection” algorithm [21]. Private
pair. Let us mark by symbol * the elements in the cov�
ering array that do not affect coverage of all tuples of
size t (i.e., the matrix preserves properties of a covering
array upon substitution of any values for these ele�
ments).

Let C be a covering array from CA(2; k, n1, …, nk)
with N rows. Let i and j be numbers of columns with val�
ues σi and σj, respectively, Then, an ordered pair {(i, σi),
(j, σj)} is called a private pair if either both σi and σj are
equal to symbol * or pair (σi, σj) occurs only once in
the submatrix of size N × 2 composed of columns i and
j. Let I = {i1, ..., is} be a set of columns. A row from CA
is an independent row over set I if each pair of its values
in columns {i, j} ⊆ I, where i ≠ j, together with the
numbers of these columns, is a private pair.

This reduction algorithm constructs the following
nonuniform covering arrays:

• An array from CA(2; k + 1, n1 – 1, ..., nk – 1, s)
consisting of N – 1 rows by means of an array from
CA(2; k, n1, ..., nk) consisting of N rows, such that the
initial array contains an independent row p over set I of
cardinality s and value xi in row p and column i ∈ I is
not symbol * and occurs at least in ni rows of the initial
array.

• An array from CA(2; q + 1 + t, (q – t)q + 1, st) of
size q2 – t by means of a uniform array from CA(2; q + 1,
q)) of size q2, where q is a power of a prime number,
1 ≤ t ≤ q and 1 ≤ s ≤ q – t.

Brief description of the algorithm.
1. Suppose that there is an array C of size N from

CA(2; k, n1, ..., nk) satisfying conditions of item 1.

2. Divide all rows of array C, but p, into s + 1 classes
C1, …, Cs, and D. Class C1 contains all rows (but p) in
which value xi belongs to column i. D contains the
remaining rows. All classes C1, …, Cs are different from
one another, since p is an independent row over I.
For each class Ci, perform steps 3–5 below.

3. For all rows from Ci, place value i – 1 to the new
column k + 1.

4. From the condition that xi in row p and column
i ∈ I is not symbol * and occurs in at least ni rows of the
initial array, it follows that Ci contains at least ni – 1
rows. Select ni – 1 rows from Ci and replace value xli in
the lith column by any admissible value such that all
values in the lith column of the selected rows are dif�
ferent.

5. In all remaining rows from Ci, replace values in
columns from I by symbol *.

6. In all columns not belonging to I (with index j),
replace all xpj by symbol *.

7. Delete row p.
8. In column k + 1 of rows from D, place *.
9. Rename values in each column, but column k + 1,

such that they contain values from 0 through ni – 1.
This yields an array for configurations of the first type.

10. For configurations of the second type, for the
initial array, select an array from CA(2; q + 1, q) with
q2 rows (constructed by means of the method
described in Section 3.1.2), where q is a power of a
prime number. In this array, any row is an independent
row over any set of columns.

11. Select t rows p1, …, pt to be deleted such that
their first q elements with index j varying from 0
through q are equal to j and the last elements are equal
to zero. The number of such rows is not greater than q.

12. The first s columns are included in set I. There
is no sense to take more than q – t columns, since the
number of possible values in the column added cannot
be greater than q – t.

13. Perform steps 1–9 for selected p1, …, pt rows
with the selected initial array and set I. This can be
done by one pass through the array.

The arrays obtained are covering, but not necessar�
ily minimal, ones (the proof can be found in [21]).

Time complexity of the algorithm is O(N(k + 1)),
and the required memory is O(Nk), since the initial
arrays are to be permanently kept in the memory.

3.2.3. Construction of nonuniform arrays of
strength t = 2 by combining blocks from uniform cover�
ing arrays and auxiliary arrays [5]. This recursive algo�
rithm constructs a covering array from CA(2; k, n1 ..., nk),
where k > max(n1, …, nk). Further studies are required
in order to extend this method to the case of CA(t; k,
n1, ..., nk), t > 2, and the case of variable strength arrays.

Brief description of the algorithm.
1. Suppose that it is required to construct a nonuni�

form covering array from CA(2; k, n1, ..., nk). Let n ≥
max(n1, …, nk) be the least integer that is a power of a

132

PROGRAMMING AND COMPUTER SOFTWARE Vol. 37 No. 3 2011

KULIAMIN, PETUKHOV

prime number, and let k > n (i.e., the number of the
parameters is sufficiently large).

2. Construct a uniform array A' from CA(2; n + 1, n).
The number of rows in the array is equal to n2.

3. An auxiliary array B(n2 – 1, n + 1, n, d) = A' of
the first type is A' without the first row and with the
columns successively repeated d times. The number of
rows in such an array is equal to n2 – n, and the num�
ber of columns is (n + 1)d.

4. An auxiliary array R(n2 – nn, n, d) = A' of the sec�
ond type is A' without the first n rows and the first col�
umn, with the remaining columns being successively
repeated d times. The number of rows in such an array
is equal to n2 – n, and the number of columns is nd.

5. An auxiliary array I(c, d) of the third type is the
array of ones consisting of c rows and d columns.

6. An auxiliary array N(n2 – n, n, d) of the fourth
type is the array of pairs of size n × d with the appended
from the bottom array of triples of size n × d, and so on,
array of n's of size n × d. Array N(cn, d) has c rows and
nd columns.

7. Construct the resulting array from the auxiliary
ones for s = logn + 1k cycles. If s = l, from the array con�
structed on step 2, we take k columns. The array
obtained is the resulting one.

8. The algorithm of selection of auxiliary arrays and
the numbers of their repetitions on each step is
described in [5]. It is too cumbersome to be fully pre�
sented here.

The array obtained in this way is a covering (the
proof can be found in [5]), but not necessarily minimal,
array. Examples presented in [5] show that the arrays
constructed by this method are sufficiently small. The
size of the array obtained is ⎡logn + 1(k)⎤(n2 – 1) + 1.
Time complexity of the algorithm is O(n2 + k log2k),
and the required memory is O((n2(n + 1) +
k(⎡logn + 1(k)⎤(n2 – 1) + 1)) = O(n3 + n2k logn + 1k),
where n ≥ max(n1, ..., nk) is the least integer equal to a
power of a prime number. The construction cannot be
optimized in terms of memory used, since the entire
array is to be constructed at once rather than row by
row.

This algorithm does not allow one to extend the
already existing set of rows.

There is also no way to specify constraints on combi�
nations of parameter values that reduce the array size.

All methods presented below do not depend on the
construction of uniform covering arrays and can be
applied for the construction of both nonuniform and
uniform arrays.

3.2.4. Recursive construction of uniform arrays of
strength two [17, 33, 41, 42].

Array profile. By symbol *, we mark elements in the
covering array that do not affect coverage of all tuples
of size t (i.e., upon substitution of any values for these
elements, the matrix preserves properties of the cover�
ing array). The profile of a matrix of size N × k is a row

of length k in which value di is equal to the number of
symbols * in the ith column of the matrix.

This recursive algorithm constructs covering arrays
of strength two if there exist A from CA(2; k, v1, …, vk)
of size N with profile (d1, …, dk) and, for all i ∈ [1, k],
Bi from CA(2; li, mi, 1, …, mi, li) of size Mi with profile
(fi, 1, …, fi, li) such that mij ≤ vi for all j∈[1, li]. By means
of this algorithm, one can construct an array from
CA(2; l1 + … + lk, ml, 1, …, m1, l1, …, mk, 1, …, mk, lk)
consisting of T = N + max(Mi – di) rows.

Brief description of the algorithm.
1. Suppose that there is a nonuniform covering

array A from CA(2; k, n1, …, nk) of size N with profile
(d1, …, dk).

2. Suppose that, for all i ∈ [1, k], there are nonuni�
form covering arrays Bi from CA(2; li, mi, 1, …, mi, li) of
size Mi with profile (fi, 1, …, fi, li) such that mij ≤ ni for
all j ∈ [1, li].

3. The first N rows of the resulting array consisting

of T = N + (Mi – di) rows and l1 + … + lk col�
umns (we denote its columns as C(i, j), where 1 ≤ i ≤ k,
1 ≤ j ≤ li) are constructed as follows:

3.1 for all 1 ≤ i ≤ k, fix i; now, li is a constant and Ai
is the fixed i th column of matrix A;

3.2 further, for all 1 ≤ j ≤ li, make column C(i, j) of the
resulting array equal to Ai, i.e., repeat Aili times to
obtain the ith block of rows with identical elements; di
rows in the ith block are rows consisting of *.

4. Rows with numbers from N + 1 through T in
each block are also filled with *.

5. In each ith block, starting from the top, select Mi
rows that entirely consist of *. Such a row contains li
elements.

6. The jth element in the kth row selected on the
previous step is assigned the value of the jth element of
the kth row of the Bith array.

7. If there remain rows that entirely consist of * or
are identical to the already constructed ones, they are
deleted. The remaining * are replaced by arbitrary val�
ues that are admissible for the given column.

The array obtained in this way is a covering (the
proof can be found in [41]), but not necessarily mini�
mal, array. How to reduce the array size is described in
[33].

Time complexity of the algorithm is estimated as
O((N + M)L +), and the required mem�

ory, as O((N + M)L + (Mili)), where N is the

size of the initial array, M = (Mi – di), and L =

. The construction cannot be optimized in

terms of memory used, since the entire array is to be
constructed at once rather than row by row.

There is also no way to specify semantic constraints
that reduce the array size.

maxi 1=
k

Mili()
i 1=
k

∑
maxi 1=

k

maxi 1=
k

lii 1=
k

∑

PROGRAMMING AND COMPUTER SOFTWARE Vol. 37 No. 3 2011

A SURVEY OF METHODS FOR CONSTRUCTING COVERING ARRAYS 133

3.2.5. Optimization algorithms. Further, we con�
sider a family of optimization, or the so�called greedy,
algorithms. Algorithms of this kind are often applied
to solving problems for which no efficient solution
techniques exist. All greedy algorithms rely on the fol�
lowing general principle: every time when a choice is
to be made, the variant that appears to be the best one
at the moment is selected; i.e., a locally optimal vari�
ant is selected in the hope that it leads to the optimal
solution of the global problem [43]. As applied to the
algorithms for construction of covering arrays, this
means that, on the current step, the algorithm selects
the row that covers the greatest number of the uncov�
ered pairs, triples, or other sets of values.

Generally, the greedy algorithms not always lead to
an optimal solution [43]. As for construction of cover�
ing arrays, the greedy algorithms also often yield arrays
that are not minimal.

Advantages of the greedy algorithms are as follows:
• capability of constructing uniform and mixed

covering arrays for any parameter configurations;
some algorithms can easily be modified for construct�
ing variable strength covering arrays;

• sound time asymptotics;
• in some cases, arrays can be constructed row by

row rather than as an entire matrix;
• the greedy algorithms can be used both indepen�

dently and jointly with other techniques for minimiz�
ing the arrays obtained;

• it is possible to extend an algorithm by specifying
constraints on possible combinations of parameter
values reducing the array.

Disadvantages of the greedy algorithms are as fol�
lows:

• the constructed array is not always minimal and,
quite often, is far from minimal one; for the majority
of the greedy algorithms, the better the time estimate,
the greater the size of the constructed array;

• in the general case, no methods exist for estimat�
ing proximity of the constructed array to the minimal
array;

• great amount of memory is sometimes required,
since all uncovered combinations (pairs, triples, etc.)
of the parameter values are to be kept in the memory.

Arrays of one and the same configuration con�
structed by different greedy algorithms may differ,
since values of some parameters are selected randomly
in the course of construction [18].

The search of classes of configurations of covering
arrays for which a particular greedy algorithm finds
minimal, or close to minimal, arrays is a separate
problem in the study of greedy algorithms. In this
paper, this problem is not considered, and we assume
that the application domain of all greedy algorithms
includes any configurations of uniform and nonuni�
form covering arrays of fixed strength.

Now, let us consider some known greedy algo�
rithms in more detail.

3.2.5.1. Algorithm based on the addition of a new
parameter (IPO) [13, 18, 22].

Brief description of the algorithm.
1. Construct covering array of strength t for the first

t parameters (complete search of combinations of the
parameter values).

2. Add the next parameter (new column).
3. Expansion along the horizontal. Add values to

the new column to cover as many tuples of cardinality
t that include values of the new parameter as possible.

4. Expansion along the vertical. Add rows to the ini�
tial array to cover the remaining tuples of cardinality t.

5. Add the next parameter and return to step 2.
After slight modification, this algorithm can be

used for the extension of the already existing covering
array from CA(t; k, n1, …, nk) to an array from CA(t; k +
p, m1, …, mk, ..., mk + p), where ni ≤ mi, 1 ≤ i ≤ k, and
also ∃j 1 ≤ j ≤ k, nj < mj, and/or p > 0.

Algorithms of expansion along the horizontal and
vertical for t = 2 are described in [13]. Algorithms of
expansion along the vertical always add a minimal
number of tests for covering tuples of cardinality two.
The time estimate O(d4k + d2k3) of the expansion
along the vertical for t = 2, where k is the number of the
parameters and d = max(n1, …, nk), presented in [13]
is not correct; the correct estimate is O(d4k2 + d2k3).
In that paper, two algorithms of expansion along the
horizontal are described: one has exponential opera�
tion time and guarantees minimality of the array
obtained, and the other has polynomial time estimate
О(d5k3), but does not guarantee minimality of the
array. In [13], the latter estimate is mistakenly given as
О(d5k2).

A modification of the algorithm combining expan�
sions along the vertical and horizontal is presented in
[44].

1. Suppose that an initial array from CA(2; k, n1, …, nk)
is to be supplemented by one parameter, which takes
nk + 1 values, where nk + 1 ≤ nk.

2. Copy columns k and k + 1 row by row in accor�
dance with the following rule: if the value in the ith
row of the kth column is less than nk + 1, then this value
is placed to the ith row of the (k + 1)th column; oth�
erwise, symbol * is placed to this position. In the
course of copying, if a pair of values from the last and
added columns is met for the first time, this row is
marked as “mandatory.” In this way, we cover all pairs
from the added column and all columns, but the last
one, as well as all pairs of form (x, x) from the added
column and the last column. After this, it remains to
cover nk + 1nk – nk + 1 pairs.

3. For each uncovered pair from columns (j, k + 1)
with values (a, b), we do the following:

3.1. Select row p, the jth column of which contains
*, or row p that is not marked as “mandatory,” which
contains a in the jth column. If there is no such a row,
then add a new row that contains a in the jth column

134

PROGRAMMING AND COMPUTER SOFTWARE Vol. 37 No. 3 2011

KULIAMIN, PETUKHOV

and b in the (k + 1)th column. To the other columns,
* is placed. Then take the next pair (step 3).

3.2. If row p has been found and contains * in the
jth column, a is placed to this position. Row p is
marked as “mandatory.” Value b is placed to the (k +
1)th column of row p. Suppose that the previous value
was b'. If this is *, take the next pair (step 3). Other�
wise, for all pairs that have been covered after the
replacement of b with b' (pairs from columns (h, k + 1)
with values (x, b'), where 1 ≤ h ≤ k – 1 and x is the value
in column h of row p), perform step 3.

In [44], an incorrect estimate of the covering array
growth was used, due to which time complexity was
calculated incorrectly. The correct values of time com�
plexity and the required memory are O(d6k3logk) and
O(kd2logk + d2), respectively, since it is required to
keep in the memory the entire array and uncovered
pairs for last two parameters.

For t > 2, the algorithm of expansion along the ver�
tical from [13] was modified in [22].

1. Uncovered tuples of cardinality t are denoted as
((pk1, w1), …, (pk(t – 1), wt – 1), (pi, u)), where i the ordi�
nal number of the added parameter, u is the value of
this parameter, pkj is the ordinal number of the already
added parameter, and wj is the value of this parameter,
kj < i, 1 ≤ j ≤ t – 1.

2. The set of the initial rows of the array is denoted
as T, and the set of new rows, as T '. Set T ' is initially
empty.

3. Search all uncovered tuples and select the next
tuple ((pk1, w1), …, (pk(t – 1), wt – 1), (pi, u)).

4. If T includes a row that contains special symbol
*, which denotes an arbitrary value, on the place with
number pkj0 and either appropriate values wj or symbols
* in any combination on all other places, then all sym�
bols * in such a row are replaced by values wj corre�
sponding to numbers of these places.

5. Otherwise, T ' is supplemented with a row that
contains values wj on places pkj and symbols * on all
other places.

6. If not all uncovered tuples have been considered,
go to step 3.

This algorithm adds the required number of tests to
cover tuples of cardinality t; however, it cannot guar�
antee minimality of the array. The size of the array
obtained will depend on the order the uncovered
tuples of cardinality r are considered (step 3).

The modified polynomial (not guaranteeing mini�
mality) algorithm of expansion along the horizontal
for t > 2 looks as follows [22].

1. Suppose that it is required to supplement an ini�
tial array of size N with a column pi with feasible values
v1, …, vni.

2. If N is less than the possible number of values for
the new column ni, then add value vj to the jth row of
the initial array, 1 ≤ j ≤ N. The construction is com�
pleted.

3. Otherwise, search rows to which the column has
not been added yet.

4. For each row, search all values of column pi.
5. For each pair (extendable row, value) calculate

how many tuples of cardinality t have been covered as
a result of extension of this row by the new value.

6. Select the pair (extendable row, value) that max�
imizes the number of the covered tuples. The selected
value is placed to the selected row.

7. From the uncovered tuples of cardinality t,
remove those that become covered.

8. If not all rows have been searched, return to step 5.
In work [22], steps 3–7 look more complicated.

In that work, it is assumed that a uniform array is con�
structed, which makes it possible to use heuristics,
which, in turn, considerably speed up construction of
the array and reduce the amount of memory used.

Suppose that it is required to extend a uniform cov�
ering array from CA(t; k – 1, n) with the number of
rows equal to r to a covering array from CA(t; k, n).
The extension of row i (of length k – 1) by value v is
the ith row of the initial array to which value v is added
from the left. The length of the extended row is k.
Since the initial array is covering, all tuples of cardi�
nality t in it have already been covered, and it remains
to cover only tuples in which the added column takes
part. In [22], two auxiliary matrices are used to store
information about covered tuples:

• In matrix Ti, v, the number of tuples covered as a
result of extension of row i by value v and the number of
tuples covered by the previous extensions are written. The
number of the new tuples covered as a result of extension

of row i by value v is equal to – Ti, v (since the array
is uniform). The size of matrix T is r by n.

• CovΛ, v is a Boolean matrix in which element Λ,
v is “true” if tuple Λ is already covered. Symbol Λ
denotes a tuple of cardinality t – 1 where the last column
does not take part (all such tuples can be numbered and

the number of such tuples is equal to nt – 1), and v is
one of feasible values between 0 and n – 1. The size of

matrix Cov is equal to nt .

The algorithm described in [22] effectively manip�
ulates these data structures, and time complexity of
the extension of a covering array from CA(t; k – 1, n)
with r rows to a covering array from CA(t; k, n) is esti�

mated as O(r2/nt – 1 + rnt). The estimate of

the required memory is O(rn + nt).

The total time required for the construction of an array

from the very beginning is estimated as O(N2/nt – 1
 +

Nnt), where N is the number of rows of the resulting
array. These estimates were obtained in [22] based on
empirical data with regard to some assumptions
imposed by the authors. If we add one more assump�

Ct 1–
k 1–

Ct 1–
k 1–

Ct 1–
k 1–

Ct 1–
k 1– Ct 1–

k 1–

Ct 1–
k 1–

Ct
k

Ct
k

PROGRAMMING AND COMPUTER SOFTWARE Vol. 37 No. 3 2011

A SURVEY OF METHODS FOR CONSTRUCTING COVERING ARRAYS 135

tion that the algorithm constructs almost minimal
arrays and take into account that the number of rows

in the almost minimal array is N ≤ ntlog(nt), time
complexity of the algorithm can be estimated as

O(n2tlog2(nt)/nt – 1 + n2tlog(nt)). The estimate

of the required memory is O(nt + 1log(nt) + nt).

In [22], a heuristics is presented that considerably
reduces steps of the algorithm that support matrix n < 10
in the actual state. Instead of traversing matrix Ti, v and
placing correct values in CovΛ, v, it is filled with an
“average” value. If this heuristics is used, time com�
plexity of the extension of a covering array from CA(t;
k – 1, n) with r rows to a covering array from CA(t; k, n)

is estimated as O(r2n + r + rnt). The estimate
of the required memory is O(rn).The total time
required for the construction of an array from the very
beginning by the algorithm with the heuristics is esti�

mated as O(N2nk + N + Nnt), where N is the
number of rows of the resulting array.

In a more general case of a nonuniform array,
where the above�mentioned heuristics cannot be
applied, time complexity estimate of modified algo�
rithms for adding one parameter with nk + 1 possible
values to an array from CA(t; k, n1, …, nk) will differ by
an order of magnitude:

• for the expansion along the vertical, O(t((k +

1) + (k + 1)2));

• for the expansion along the horizontal,

O((k + 1)2nk + 1) where mk + 1 = max(n1, ..., nk + 1).

The total time complexity estimate will be
• O(t(d2tk2 + dtk3))for the expansion along the ver�

tical and
• O(d2t + 1k3), where d = max(n1, ..., nk) for the

expansion along the horizontal.
For the entire IPO algorithm, the estimate is

O(tk6dt(dt + k + dtk)).
The amount of the required memory depends on

the array size, the number of the uncovered tuples of
cardinality t, and the number of tuples covered on each
step. The greatest amount of memory is required when
the last column is added; at this stage, the array size
and the numbers of the uncovered and covered tuples
of cardinality t will take maximum values: the array
size will be O(kdtlogk) [18], the number of uncovered and

covered tuples will be O(dt), and the amount of

memory required for them will be O(tdt). The total

required memory is equal to O(dt(klogk + t)),
where d = max(n1, ..., nk).

The construction cannot be optimized in terms of
memory used, since the entire array is to be con�
structed at once rather than row by row.

Ct
k

Ct
k Ct

k Ct
k Ct

k

Ct
k Ct 1–

k 1–

Ct 1–
k 1– Ct 1–

k 1–

Ct
k Ct

k

mk 1+
2t

mk 1+
t

mk 1+
2t

Ct 1–
k 1–

Ct 1–
k 1–

Ct 1–
k 1–

The original algorithm does not allow one to spec�
ify constraints on combinations of parameter values;
however, it can easily be modified to take into account
semantic constraints, which reduce the array size.

3.2.5.2. Algorithms based on selection of the best
rows among candidates [4, 17, 45–47]. This family of
optimization algorithms is efficient to use for extend�
ing an existing covering array to a bigger one (in height
or width) that includes the original array.

Only algorithms from this family are capable of
constructing variable strength arrays from the very
beginning or by extending the already existing arrays of
smaller size. To implement construction of variable
strength arrays, it is required to invent appropriate
heuristics (see below).

For particular configurations, the application
domain of one or another heuristic is determined
experimentally. For array construction from the very
beginning, see works [4, 17, 23, 45–49]. As for extend�
ing an already existing array, we have not found any
publications.

Brief description of the family of algorithms [17].
1. Suppose that it is required to construct a covering

array from CA(t; k, n1, …, nk).
2. Repeat steps 3–13 N_1 times.
3. While there tuples of cardinality t uncovered by

the constructed array, perform steps 4–11.
4. Repeat steps 5–11 N_2 times to construct the

next row.
5. Successively select parameters until no one is left

performing steps 6–9.
6. Using rule PR1 (a heuristic criterion of the best

selection), among all k parameters, select a set of
parameters P to which values are assigned in the first
turn.

7. Using rule PR2, among all parameters from set P,
select one parameter pi to which values are assigned in
the first turn. Possible values of parameter pi are num�
bers from 0 through ni.

8. Using rule VR1, among all values of parameter pi,
select a set of values V that are considered to be most
appropriate.

9. Using rule VR2, from set V, select one value v
and assign value v to parameter pi.

10. After successive repetition of steps 5–9 for all
parameters, a row is obtained, which is test T.

11. If this row covers more tuples of cardinality t
than that constructed the previous time, we keep it.
Return to step 4.

12. After steps 3–11, a covering array CA is
obtained.

13. If the number of rows in this array is less than
that constructed the previous time, we keep the array.
Return to step 2.

14. After N1 repetitions of the construction, we
obtain an array for configuration (t; k, n1, ..., nk). Since
selection of the row (test T) covering the greatest num�

136

PROGRAMMING AND COMPUTER SOFTWARE Vol. 37 No. 3 2011

KULIAMIN, PETUKHOV

ber of tuples of cardinality t (steps 5–10) is an NP�
complete problem [12], heuristics PR1, PR2, VR1, and
VR2 are required in order to solve this problem for
polynomial time. In [17], it is proved that the size of
the covering array grows logarithmically as the number
of parameters k grows. Based on this proof, a hypoth�
esis was put forward that, for efficient construction of
a covering array, on steps 5–10, it is not necessary to
construct the row that covers the greatest number of
tuples of cardinality t; instead, it is sufficient to con�
struct a row that covers an average number of tuples of
cardinality t. We denote this number as δ. In [17], it is
calculated as δ = Σ1 ≤ p1 < ... < pt ≤ kδp1, ..., pt, where δp1, ..., pt =
rp1 ,..., pt/(np1...npt) and rp1, ..., pt is the number of the
uncovered tuples of cardinality t that include values of
parameters p1, …, pt. Number δp1, ..., pt is called local
density, and δ, global density.

Possible variants of the heuristic selection criterion
PR1 are as follows:

1. The best parameter is that with the greatest num�
ber of possible values. We denote this criterion as
MAX_N.

2. The best parameter is that that is included in the
greatest number of tuples of cardinality t uncovered at
the given stage. For example, suppose that there are
uncovered pairs (v2, 1, v3, 2), (v1, 2, v2, 2), and (v2, 2,
v3, 1), where vi, j is the jth value of the ith parameter.
Then, in accordance with this criterion, the best
parameter is the second parameter (i = 2), since it is
met three times. This criterion takes into account only
uncovered tuples remaining after the previous param�
eters have been fixed. We denote this criterion as
P_IN_MAX_UC.

3. The best parameter is that that is included in a
certain number, equal to δ (not necessarily maximal),
of uncovered tuples of cardinality t. This criterion is
more flexible and makes it possible to take into
account (under appropriate choice of δ) not only fixed
parameters but also those that have not been fixed yet
(see [17]). This is criterion δ.

4. The best parameter is selected in a random way.
We denote this criterion as RAND.

Since several parameters may meet the PR1 crite�
rion of the best parameter, criterion PR2 is needed to
select one parameter among several ones. Possible
variants of the heuristic selection criterion PR2 are as
follows:

1. Take the parameter with the first ordinal number.
This is the BY_ORD criterion.

2. Select the parameter in a random way.
3. To resolve collisions of the first and third variants

of PR1, for PR2, we can take the second variant of PR1
(i.e., to be greedy once more) and, then, one of the
first two criteria PR2 in order to select the only one
variant.

Possible variants of the heuristic selection criterion
VR1 are as follows:

1. The best value is that that covers the greatest
number of tuples of cardinality t that have not been
covered at the given stage for the parameters that have
already been fixed. We denote this criterion as
V_IN_MAX_UC.

2. The best value is that that covers a certain num�
ber, equal to δ (not necessarily maximal), of uncovered
tuples of cardinality t. This criterion is denoted as δ.

3. The best value is selected in a random way.
Criterion VR2 is selected similar to PR2.
The majority of the currently existing commercial

and free tools generating combinatorial test suites use
just greedy algorithms for constructing covering arrays.
Table 7 shows heuristics used by these algorithms.

Some variants of the greedy algorithms (ATGT [8],
PICT [26]), to construct each row, search uncovered
tuples of cardinality t–t parameters and t values–
rather than parameters and values. Several selected
tuples form a row of the test. These algorithms use the
following heuristics for searching tuples:

1. Random search. In this case, the algorithm is
launched several times, and the best solution is
selected.

2. Search using lexicographical order. This variant
does not yield good results.

3. Tuple t1 is considered to be better than (is
selected before) tuple t2 if pairs parameter–value avail�
able in tuple t1 occur more rarely in the already covered
tuples than pairs parameter–value available in tuple t2.

4. Tuple t1 is considered to be better than tuple t2 if
the pair parameter–value from tuple t1 that was least
often used in the previous tests occurs more rarely in
the already generated tests than the pair parameter–
value from tuple t2 that was least often used in the pre�
vious tests.

5. Tuple t1 is considered to be better than tuple t2 if
the pair parameter–value from tuple t1 that was most
frequently used in the previous tests occurs more
rarely in the already generated tests than the pair
parameter–value from tuple t2 that was most fre�
quently used in the previous tests. Although this crite�
rion seems to be opposite to the previous one, it gen�
erally does not result in the reverse order of tuples.

6. Tuple t1 is considered to be better than tuple t2 if
its pairs parameter–value are distributed more uni�
formly in the previous tests. For each pair, the mean�
square deviation is calculated. This criterion is based
on the same considerations as those used in algorithm
DDA [46]: each new row–test should cover an average
number of tuples (δ).

The last four criteria can be used in two ways: (1)
tuples can be selected independent from one another
or (2) pairs parameter–value that have already been
used in the constructed part of the test row are taken
into account when the next tuple is selected. The latter
way demonstrates better results but involves greater
time expenditures.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 37 No. 3 2011

A SURVEY OF METHODS FOR CONSTRUCTING COVERING ARRAYS 137

We have not found any information about heuris�
tics used in the greedy algorithms employed by the fol�
lowing tools [49]: CATS, TestCover.com, Case�
Marker, and Pro�test. Analysis of heuristics used in
industrial tools was carried out in work [23]. They
decided to use P_IN_MAX_UC as PR1, RAND as
PR2, V_IN_MAX_UC as VR1, δ as VR2, N1 = 5, and
N2 = 1. In addition, instead of repetition of construc�
tion of a current test, they employ a heuristic algo�
rithm of increasing the number of tuples covered by
each newly constructed test. In other words, instead of
step 11 of the above�discussed algorithm, heuristic
search of a local extremum in the row is performed.
In a number of particular cases, such a technique
makes it possible to construct smaller covering arrays
in less time compared to the industrial tools listed in
Table 3. By means of this method, the least covering
arrays for configurations where the number of param�
eters values is equal to 2 and the strength is 5–8 were
constructed in 2007 [37].

This family of algorithms is characterized by poly�
nomial operation time, which depends on the heuristics
used. In the general case, the operation time is esti�
mated as О(k(f(PR1) + f(PR2))d(f(VR1) + f(VR2))),
where d = max(n1, …, nk), and f(PR1), f(PR2), f(VR1),
and f(VR2) are operation times of the corresponding
heuristics. The memory estimate is calculated similar

to that for the IPO algorithm: O(dt(k logk + t)).
The array can be constructed row by row; however, all
already constructed rows are to be stored in the mem�
ory. The algorithm permits constraints on possible
combinations of parameter values. In [8, 24–26], it is
shown how to modify almost any greedy algorithm
from this family such that it will take into account such
constraints. Moreover, it is shown how they can be
specified in the form of logical predicates. Compari�
son of efficiency of using various logical solvers SAT is
also provided [8, 24, 25].

Ct 1–
k 1–

3.2.6. Solution of optimization problem. Further,
we consider algorithms based on solving the following
optimization problem. Suppose that we have a set of
feasible solutions and an estimation function c(S)
defined for all S ∈ Σ. The optimal solution is a feasible
solution with the minimal estimation function. Trans�
formation T is an action applied to S to obtain a new
feasible solution.

The problem of covering array construction can be
reduced to the above problem as follows: Σ is a set of all
arrays (possibly, with uncovered combinations), S is
one of the arrays, c(S) is the number of the uncovered
combinations (if c(S) = 0, then S is a covering array),
and T is a variation of values of elements of array S.

3.2.6.1. Hill climbing [17]. This optimization algo�
rithm is efficient for improving (i.e., reducing) the
existing test suites for any configurations. For the ini�
tial solution, an available test suite is selected.

Brief description of the algorithm.
1. Repeat array construction not less than N1 times

or until a covering array is constructed (steps 2–7).
2. Select an initial solution in a random way.

It becomes the current solution S.
3. Apply a random transformation of the current

solution to obtain solution S '.
4. If c(S ') ≤ c(S), then S ' is taken to be the current

solution.
5. If the stopping heuristic condition is fulfilled, go

to step 6; otherwise, return to step 3.
6. After steps 2–5, we have solution S, which is not

necessarily a covering array.
7. If the constructed array is covering and its size is

less than the size of the previously constructed array,
keep it and return to step 2.

8. Having repeated construction N1 times (or
more), we obtain the desired array.

Table 7. Heuristics of the covering array generation tools

PR1 PR2 VR1 VR2 N1 N2

AETG [4, 45] RAND* – V_IN_MAX_UC RAND ≤50 ≤50

TCG [47] MAX_N BY_ORD V_IN_MAX_UC BY_ORD 1 max(n1 … nk)

DDA [46] Δ BY_ORD Δ BY_ORD 1 1

CTS [16, 19] P_IN_MAX_UC** RAND V_IN_MAX_UC** RAND 1 1

Jenny [48] RAND – –*** – 1 1

Notes: * At the first passage of the parameter selection loop, a parameter is selected whose value occurs in the greatest number of tuples
of cardinality t that have not been covered at the given stage.

** For t parameters and t values of these parameters, rules P_INMAX_UC and V_IN_MAX_UC, respectively, are applied: those
t parameters and their values are selected that contain parameters and values included in the greatest number of the uncovered
tuples. For all other pairs (parameter, value), vector (p0, …, pt – 1) is constructed, where pi is the number of uncovered tuples
(not taking into account t – 1 – i values that have already been fixed) of cardinality t that contain the given pair. The best pair
is selected as a pair for which the corresponding vector takes the greatest value. Vectors are compared lexicographically. If there
are several pairs with equal vectors, the best pair is selected randomly.

*** No heuristic is used. A row is selected that covers the greatest number of tuples of cardinality t. In the general case, this requires
exponential time.

138

PROGRAMMING AND COMPUTER SOFTWARE Vol. 37 No. 3 2011

KULIAMIN, PETUKHOV

In the general case, the algorithm has exponential
time complexity and memory expenditures. The con�
struction cannot be optimized in terms of memory
used, since the entire array is to be constructed at once
rather than row by row. The original algorithm does
not allow one to specify constraints that reduce size of
the array or speed up its construction.

In [2], the algorithm was modified for work with
variable strength covering arrays. It is successfully used
for small values of parameters of covering array config�
urations.

3.2.6.2. Tabu search [17, 50, 51]. This optimiza�
tion algorithm is efficient in the same cases where the
hill climbing algorithm is efficient. However, owing to
the possibility of specifying constraints, this algorithm
can work much faster in real applications [50].

The idea of the algorithm is the same as that of the hill
climbing algorithm, but there are certain distinctions.

1. Repeat array construction N1 times for a config�
uration Q with k parameters for which the upper and
lower bounds of the array size (Nmin, Nmax) are known.

2. Select an initial solution—an array of a size
belonging to the range (Nmin, Nmax)—in a random way.
It becomes the current solution S.

3. Apply a random transformation of the current
solution as described below.

3.1. Select in a random way an uncovered tuple of
cardinality t from the set of uncovered tuples and
denote it as UT.

3.2. Select rows from solution S such that variations
of only one element of such a row cover UT. If there
are no such rows, select one row in a random way.

3.3. For each selected row, replace its element (or
elements) such that UT became covered and calculate
the cost of the new solution (with replaced element),
i.e., the number of the uncovered tuples of cardinality t.

3.4. Among all solutions, select solutions with the
lowest cost that do not contradict the constraints used.

3.5. If such a solution is not unique, select solution
S ' in a random way. S ' is taken to be the current solu�
tion.

4. If S ' is a covering array, store S ' and, then, select
a new random initial solution the number of rows in
which is less than that in S ' and return to step 3. If the
number of loops in the covering array construction
exceeded N2, go to step 5; otherwise, return to step 3.

5. If there is a covering array constructed on the
previous steps, keep it; otherwise, select a new random
initial solution in which is greater than that in S ' and
return to step 3.

6. After steps 2–5, we have solution S that is a cov�
ering array.

7. If the size of the constructed array is less than the
size of the previously constructed array, keep it and
return to step 2.

8. Having repeated construction N1 times, we
obtain the desired covering array.

The following constraint (see step 3.4) is described
in [50]: if solution S ' became current in the previous T
loops (steps 3–4 (1 ≤ T ≤ 10)), it cannot become cur�
rent anymore. This constraint does not allow the algo�
rithm to get caught in an endless loop.

It is possible to specify other constraints as well.
They can be used to assign greater weight to modifica�
tions that result in some desirable features.

In the general case, the algorithm has exponential
time estimate. If an upper and lower bounds of the array
size Nmin and Nmax are known, time complexity is esti�
mated as O(N1kNmaxd(k + logT) + dkNmax(T + k2)),
where d is the maximum number of admissible param�
eter values, and the required memory, as O(kNmaxT),
where T is the number of the stored arrays to imple�
ment constraints. The memory use cannot be opti�
mized, since the entire array is to be constructed at
once rather than row by row.

These estimates considerably exceed estimates for
optimization algorithms from other families (for
example, because N1 should be sufficiently large);
therefore, it is advisable to use this algorithm only for
research purposes.

3.2.6.3. Simulated annealing [17, 39, 51–53]. This
optimization algorithm is efficient in the same cases as
the hill climbing algorithm. The algorithm is protected
from getting into a cycle in a local minimum, which,
theoretically, makes it possible to find a better solution
compared to simple hill climbing. Since this algorithm
relies on probabilistic foundation, it needs further
study to collect statistics and make clear for what con�
figurations it works better.

In [39], the simulated annealing is efficiently used
for construction of initial covering arrays and arrays of
special form for their subsequent use in recursive con�
structions. These recursive constructions are described
in Sections 3.1.6–3.1.9 of this paper. Such a combina�
tion makes it possible to obtain relatively small (com�
pared to other methods) covering arrays in reasonable
time.

Brief description of the algorithm. This is a general�
ization of the hill climbing algorithm. The algorithm
selects in a probabilistic way a current solution with
the worst estimation function. The worst solution is
selected with the probability e–(c(S ') – c(S))/KT, where c()
is an estimation function, K is a constant, and T is a
parameter called a temperature, which can be modified
in the course of operation. This allows the algorithm to
avoid infinite looping in a local minimum and con�
tinue search of the global extremum. The annealing
degree reduces by small steps, making it possible to
reach an equilibrium state by applying a sequence of
transformations of the current solution. Usually, the
annealing degree reduces in accordance with the
equation T = αT, where α is a number that is slightly
less than 1. As soon as an appropriate stopping condi�
tion is fulfilled, the current value is taken to be an
approximate solution of the problem.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 37 No. 3 2011

A SURVEY OF METHODS FOR CONSTRUCTING COVERING ARRAYS 139

In the general case, the algorithm has exponential
time complexity. If an upper and lower bounds of the
array size Nmin and Nmax are known, time complexity is
estimated as O(N1k + k3Nmax), and the required mem�
ory, as O(kNmax). The memory use cannot be opti�
mized, since the entire array is to be constructed at
once rather than row by row.

These estimates considerably exceed estimates for
optimization algorithms from other families; there�
fore, it is advisable to use this algorithm only for
research purposes.

No provision is made in the original algorithm for
specification of constraints that reduce the array size
or speed up its construction.

3.2.6.4. Great deluge [17, 54, 55]. This algorithm
is classified among the so�called threshold accepting
algorithms. The method is similar to that used in the
simulated annealing algorithm. It differs from the lat�
ter in that, instead of using probability when accepting
a solution with the worst value of the estimation func�
tion, the solution is accepted when its cost does not
exceed a certain current value, which is called a water
level. In the course of the algorithm operation, the
water level gradually falls, reducing the number of pos�
sible transformations. Quite often, this method dem�
onstrates fast convergence to a solution [54, 55].

The algorithms described in Section 3.2.6 have
poor time estimates and, therefore, almost are not
used in industry tools. However, they often construct
arrays that are closer to optimal ones than arrays con�
structed by the greedy algorithms. For this reason,
these algorithms are often used in research. They can
also be used for constructing variable strength covering
arrays under appropriate selection of the estimation
function.

3.2.7. Genetic algorithms [17, 51]. The basic idea
of the genetic algorithms is control of the solution
population and its development with the help of two
operations—mutation and crossing. Mutations intro�
duce local variations in a solution belonging to a pop�
ulation, and crossing combines a part of one solution
with a part of another solution. Solution survival in the
new generation depends on whether this solution is
useful compared to other solutions in the generation.

In the case of the covering arrays, the solution pop�
ulation is a set of arrays (not necessarily covering ones)
of given size N, and N is the parameter of a current run
of the algorithm. The population size is supported
fixed and equal to M. On each step of the algorithm,
crossing and mutation occur. Crossing is a random
selection of two arrays and recombination of their rows
to obtain two new arrays possessing features of both
parents. Mutation is a modification of the new arrays,
for example, by the rules of step 3 of the tabu search
algorithm or in some other way, After sorting, only M
best arrays, which have the best usefulness function
(for example, the least number of the uncovered tuples
of cardinality t), survive. The use of the genetic algo�

rithms for searching covering arrays has been poorly
studied. The first results on the use of the genetic algo�
rithms for searching covering arrays were published
in [51]. Time complexity of this algorithm is
O(N1Mk2(Nmax + d2)), where N1 is the number of runs
of the algorithm, d = max(n1, ..., nk), and Nmax is an
upper estimate of the array size. The required memory
is O(kMNmax).

In [56], a memetic genetic algorithm for configura�
tions of the form (3, k, 2) was described. For the initial
population, M arrays are selected (M is divisible by 4)
in which the numbers of 0’s and 1’s in each column are
equal to one another (or differ by one if the number of
rows is odd); 0 and 1 are selected randomly. The M
arrays are divided into four sets with the same number
of arrays in each set. Two pairs of sets are crossed by the
following rule: a row with number i is selected in a ran�
dom way; then, Cmn = Amn (Dmn = Bmn) if m ≤ i or Cmn =
Bmn (Dmn = Amn) if m > i, where Amn and Bmn are parents
and Cmn and Dmn are descendants. For mutation, an
algorithm of searching a local minimum of uncovered
triples in the array, which is based on the simulated
annealing, is used. As a result of mutation, several
arrays are obtained. For the terminal mutation, an
array that has the least number of uncovered triples
and is most distant from the initial one is selected,
where the distance is measured by the number of dif�
ferent elements in the array (similar to the Hamming
distance). After the crossings and mutations have been
performed, there remain M arrays with the least num�
ber of the uncovered triples. For several configura�
tions, this algorithm has constructed arrays that turned
smaller than the arrays constructed earlier by other
algorithms. However, no results of comparison of the
algorithm with other techniques that are potentially
capable of constructing quality arrays (for example
simulated annealing and tabu search) are presented in
[56]. The question of whether it is possible to obtain
similar results by other methods for less time and with
lesser memory expenditures remains open.

The published results count not in favor of the
genetic algorithms: for the majority of configurations,
the time of generation of a covering array by a genetic
algorithm is greater than that by the simulated anneal�
ing or tabu search algorithms for the same configura�
tion.

3.2.8. Backtracking search [27]. Algorithms of this
type use certain rules of successive search of possible
values in the array cells for a given configuration (t; k,
n1, …, nk), n1 ≥ … ≥ nk, and array size N. Since algo�
rithms of this type require much time and memory for
the construction of an array from the very beginning,
they are used only for research purposes, for small val�
ues of parameters of the configurations, or for aug�
menting an already existing array, under the condition
that the upper bound of its size N is known.

Brief description of the algorithm.
1. The array construction begins with some initial

array. In the general case, this may be complete search

140

PROGRAMMING AND COMPUTER SOFTWARE Vol. 37 No. 3 2011

KULIAMIN, PETUKHOV

of the first t parameters (which have the greatest num�
ber of values).

2. The other cells of matrix k × N are searched. The
current value in a current cell of the array is selected by
using the CH heuristics.

3. Step 2 is repeated until the array is completely
constructed or the stopping heuristics SH fires.

4. If the array obtained is covering, the algorithm
stops; otherwise, the array backtracks to the previous
state, and the algorithm returns to step 2.

The heuristics imposing constraints on the selec�
tion of a cell and value were proposed in [27] and are
as follows:

• All vectors representing rows and columns of an
array should be arranged in lexicographical order.
In other words, if i1 and i2 are numbers of rows and i1 < i2,
then, for the vectors composed of the cell values, we
have (vi1, 1, …, vi1, k) ≤ (vi2, 1, …, vi2, k). The same is true
for the columns.

• Let all possible values for each column j be
ordered from 0 through nj, and let Mj be the greatest
ordinal number among the values that have already
been placed to column j. Then, the number of the next
value in column j may vary from 0 through Mj + 1.

A number s, 1 ≤ s ≤ t, is selected. For each tuple of
cardinality s, the frequency of its occurrence in some set
of columns is calculated. Frequencies for one and the
same set of columns must not differ by more than 1.

• The selected values must meet user�specified
constraints on possible combinations of parameter
values.

• If several values for a current cell do not meet the
above�listed constraints, there are several ways to
select one of them:

• to select the value that is lexicographically first;
• to select a random value;
• to select the value that covers the greatest number

of the uncovered tuples of cardinality t. It is noted in
[27] that this criterion is efficient only for some classes
of configurations; however, it requires more computa�
tional resources compared to the previous two criteria.

The stopping heuristics proposed in [27] is as fol�
lows. Let X be the set of uncovered tuples of cardinality
t containing column c, and let Y be the set of tuples of
cardinality t containing column c in which values in
column c have not been placed yet. Calculate set N(X)
of tuples adjacent to X, i.e., tuples from Y that differ
from X only by a value in column c. If cardinality of set
N(X) is less than cardinality of set X, then all tuples
from X cannot be covered, whatever the way the values
in cells of tuples from Y have been placed. It is required
to return to the previous step.

All these heuristics can be used simultaneously, and
the array obtained will be covering. The proof can be
found in [27].

The required time is difficult to estimate, since
there is no information on how much the proposed
heuristics reduce the search. In the general case, the

time of the algorithm operation can be estimated as
O(MNkf(CH) f(SH)), where M ≥ k(N – Ninit) is the
number of the arrays searched, f(CH) and f(SH) are
operation times of the corresponding heuristics, and
Ninit is the size of the initial array. The required mem�

ory is O(Nk2(N – Ninit) + dt), d = max(n1, ..., nk),
since all arrays in the entire selection branch, as well as
information about all tuples of cardinality t, are to be
kept in the memory.

The algorithm provides an opportunity of specify�
ing constraints on possible combinations and using
them in the heuristics, which reduce the operation
time of the algorithm.

3.2.9. Optimization of a given covering array [28].
This hybrid algorithm, which can simultaneously be
classified among the reduction and optimization algo�
rithms, is efficiently used [28] for improving (reduc�
ing) the already existing test suites for any configura�
tions. The idea of the algorithm consists in searching
elements of the initial array from CA(t; k, n1, …, nk)
that do not affect coverage of tuples of cardinality t.
These elements can be replaced by symbol *, which
means that any feasible value can be substituted for it
such that the array remains covering. Let N be the
number of rows in the initial array.

Brief description of the algorithm.
1. All elements of the initial array are considered to

be candidates for the replacement by symbol *.
2. Out of k columns of the initial array, all possible

ordered combinations of t columns (c1, …, ct) are

selected. The number of such combinations is .
For each combination of columns, perform steps 3–7.

3. Look through all rows of the initial array. For
each row r, the values in columns (c1, …, ct) of row r
form vector (v1, …, vt). If this vector was met for the
first time, then elements of the array in row r and col�
umns (c1, …, ct) are removed from the candidates for
the replacement by *.

4. After completion of the iterations of steps 2–3,
all elements remaining in the list of candidates for the
replacement by * are replaced by *.

5. If, after step 4, the array contains rows entirely
consisting of *, these rows are deleted.

6. The row containing the greatest number of * is
moved to the last place in the array. This number is
stored.

7. For all remaining rows containing *, look
through all elements of row r where * occurs (let this
element occur in column c). If the value in the last row
of column c is *, replace element of row r in column c
by a random value. Otherwise, replace it by the value
in the last row of column c.

8. Permute all rows, except for the last one, in a
random way to obtain a new initial array. Return to
step 2.

Ck
t

Ct
k

PROGRAMMING AND COMPUTER SOFTWARE Vol. 37 No. 3 2011

A SURVEY OF METHODS FOR CONSTRUCTING COVERING ARRAYS 141

9. If after M1 repetitions of steps 2–8, no rows were
deleted or the number of symbols * in the last row did
not increase, the array obtained is saved.

10. For the new array, the array obtained on the pre�
vious step is selected. In this array, the last row
becomes the first one, and a random row containing
symbol * becomes the second row. In the first and sec�
ond rows, all * are replaced by random feasible values.
Return to step 2.

11. Steps 2–10 are repeated M2 times. After each
iteration, out of the saved and the newly obtained
arrays, the lesser one is saved.

Time complexity of the algorithm is O(M2(M1(tN +
Nk + N – 1) + 6k)), and the required memory is
O(Nk + dt), d = max(n1, ..., nk). The construction can�
not be optimized in terms of memory, since the array is
to be constructed at once rather than row by row. No
provision is made for specifying constraints on possi�
ble values of parameters.

3.3. Survey Summary

Information about all above�discussed methods for
constructing covering arrays is collected in Tables 8–
10 with indication of the configuration for which each
method is advisable to use.

The following notation is used in the table head�
ings:

• M shows whether the constructed array is mini�
mal;

• E shows whether the algorithm can be used for
extending initial arrays;

• S shows whether the algorithm permits addition
of semantic constraints.

The following notation is used in the table bodies:
• d = max(n1, ..., nk) for configurations of the form

(t; k, n1, …, nk, …);
• Ne is the number of the algorithm runs;
• Nmax is the upper estimate of the array size.
For the recursive algorithm of construction of uni�

form arrays of strength t = 2,
• k1 = 1, k2 = m – 1, N is the number of rows in the

initial covering array from CA(2; m, n) obtained by
another method;

• k1 = n, k2 = 1, N = n2;
• k1 = 1, k2 = 1, N = (l + 1)(n – 1) + 1; for numbers

n and l, there exists an (n, l) cover starter;
n = 3, (k1 = 14, k2 = 1, N = 15), (k1 = 60, k2 = 14,

N = 21), (k1 = 220, k2 = 114, N = 27), (k1 = 1092,
k2 = 220, N = 33).

The direct algorithms are advisable to use for con�
structing covering arrays with a small number of
parameters, as well as in some other particular cases.
Their basic advantage is that they construct almost
minimal (or even minimal) arrays in a reasonable time.
The basic disadvantage of these algorithms is a very
narrow application domain and impossibility of dis�

Ct
k

carding rows of the array that do not meet constraints
on feasible combinations.

The recursive algorithms are good complements of
the direct algorithms for some special classes of initial
array configurations. For example, the Roux method
constructs an almost minimal array from CA(3;20,9)
consisting of 1377 rows using an array from CA(3;10,9)
consisting of 729 rows and an array from CA(2;10,9)
having 81 rows. Both initial configurations belong to
the class (t; pk + 1, pk). However, for other classes of
configurations or if the initial arrays are not minimal,
the resulting array may occur considerably larger than
the one constructed, e.g., by a greedy algorithm [37].

The recursive algorithms should be used with cau�
tion and only in special particular cases. The advan�
tage of the recursive algorithms is that they construct
almost minimal arrays for particular cases in a reason�
able time. Their basic disadvantage is a narrow appli�
cation domain and impossibility of specifying con�
straints.

The greedy algorithms are universal and, therefore,
are used in the majority of known tools for construct�
ing covering arrays [49]. They possess the following
important from the practical standpoint features:

• the possibility of discarding array rows that do
not meet constraints on feasible combinations;

• the possibility of constructing variable strength
arrays; and

• the possibility of extending the already existing
test suites.

The basic disadvantage of the greedy algorithms is
that the proximity of the resulting array to the minimal
one is inversely proportional to the operation time of
the algorithm. The use of the greedy algorithms for
optimization needs further studies.

The application domains of the algorithm of
removing redundant values and block combining algo�
rithms also need additional studies. These methods
show pretty good results; however, the implementa�
tion of the block combining method in the TConfig
tool [5] has a narrow application domain, and the
method of removing redundant values cannot be
implemented as a tool without preliminary formaliza�
tion and algorithmization. Some studies of this prob�
lem are discussed in [16, 19].

The class of covering array configurations for which
a good solution exists can considerably be extended by
combining different methods. In order to find an effi�
cient combination of methods, it is required to analyze
the initial configuration of the array. A solution based on
combining direct, recursive, and optimization algo�
rithms—the CTS package—was suggested in [16].
An extension of the technique of combining algorithms
used in CTS looks like a promising direction of future
studies.

Combination of methods based on analysis of ini�
tial combinations may rely on the following principles:

142

PROGRAMMING AND COMPUTER SOFTWARE Vol. 37 No. 3 2011

KULIAMIN, PETUKHOV

Table 8. Algorithms for constructing uniform covering arrays

Algo�
rithm Application domain

Class of
the algo�

rithm
Time complexity and memory expenditures M E S

Boolean (2; k, 2) Direct O(k), Memory: k log2k + – –

Affine (t; n + 1, n), n is a degree of
a prime number; (3; 2k + 2, 2k) Direct

nt + (n + 1)log2(n + 1) + O(),

Memory: O(n) + O()
+ – –

Group
actions

(3; 2k, n + 1), n is a degree of
a prime number

Direct

O(2k((2k – 1)(n3 – n) + n + 1) + n3),
Memory: O(2k(2k – 1) + n4 – n2)

– – –(2; 4, n), n ≡ 2 (mod 4) O(4(n + 1)n), Memory: O(4(n + 1) + n2)

(2; l, g), (g, l) cover starter
(2; l + 1, g), distinct (g, l) cover
starter

O(l(l(g – 1) + l)),
Memory: O(l + (g – 1)g)

Strength
reduction (t – 1; k – 1, n) from (t; k, n) Reduc�

tion O(Nk), Memory: O(Nk) – – –

Multipli�
cation

(t; k, n1n2) from (t; k, n1) and
(t; k, n2), N1, N2 is the number
of rows in the initial arrays

Recursive O(k(1 + N1 + N2)),
Memory: O(k(1 + N1 + N2)) – – –

Uniform,
recursive,
t = 2

(2; k1nr + rk1nr – 1 + k2nr, n),
r ≥ 1, n is a degree of a prime
number

Recursive

O(),

Memory: O((N + (r – 1)(n2 – n))(k1nr – 1 +

(r – 1)k1nr – 2 + k2nr – 1) + (n + 1)n2)

– – –
(2; n(k1 + k2)Dr + 1, n + k1Dr, n, n),
r ≥ 1, n is a degree of a prime
number,

Dr, t =

O(+

),

Memory: O((N + (r – 1)(n2 – n))(n(k1 + k2)Dr, n +

k1Dr – 1, n) + (n + 1)n2)

Ordered
design

(3; n + 1, n + 1) from OD(3; n + 1,
n + 1) and (3; n + 1, 2) of size N,
n is a degree of a prime number

Recursive O((n3 – n + Nn(n + 1)/2 – (n2 – 1))(n + 1)),
Memory: O((n3 – n + N)(n + 1)) – – –

Perfect
hash
family

(t; k2p, n) from (t; k, n) of size N,
GCD((t – 1)t/2, k) = 1
(3; (2v – 1)2 ^ j, v), v ≡ 0, 1 mod 3,
(3; (2v – 3)2 ^ j, v), v ≡ 2 mod 3,
v > 2, q ≥ v – 1 is a degree of a
prime number, j is an arbitrary
integer

Recursive

O(kp((t – 1)t/2 + 1) + k2p((t – 1)t/2 + 1)pN),
Memory: O(kp((t – 1)t/2 + 1 + N))

– – –

(t; k, n) from PHF(N1, t; k, m)
and (t; m, n) of size N2

O(N1N2k),
Memory: O(N1k + N2m)

Theorem
Roux

(3; 2k, n) from (3; k, n) and (2; k, n)
(t; 2k, n) from (t; k, n), …, (t – 2;
k, n), t ≥ 4

Recursive

O(2Ntmaxk(n + Ntmax(t – 3))),

Memory: O(2k), Ntmax is the number of rows in

the largest initial array

– – –

IPO for
uniform
arrays

Any configurations for which
there are no more efficient meth�
ods. Complement of (t; k, n) to
(t; k + p, n), where p > 0

Greedy
O(n2t log2(nt)/nt – 1 + n2t log(nt)),

Memory: O(nt + 1log(nt) + nt)
– + +

logp
4
n

logp
3
n

N i n
2

n–()+() k1n
i

ik1n
i 1–

k2n
i+ +()()

i 1=
r

∑

Ci 1–
r i–

t
r i–

i 1=
r 1+()/2

∑

N i n
2

n–()+() n k1 k2+()Di 1+ n, k1Di n,+()()
i 1=
r

∑

n
2

n k1 k2+()Di n, k1Di 1– n,+()()
i 1=
r 1–

∑

Nt max
2

Ct
k

Ct
k

Ct
k

Ct
k

Ct
k

Ct 1–
k 1–

PROGRAMMING AND COMPUTER SOFTWARE Vol. 37 No. 3 2011

A SURVEY OF METHODS FOR CONSTRUCTING COVERING ARRAYS 143

• Use of direct algorithms in combination with
recursive algorithms whenever possible, since the
resulting arrays will be constructed in a small time and
will occur close to the minimal ones. An example is
configuration (2; k, n), where n is represented as a

product of powers of prime numbers n = ...

such that k ≤ (+ 1) + 1, where p is a prime num�

ber. Construct r arrays Ai from CA(2; k,) and mul�
tiply them by the recursive multiplication algorithm.

If k ≤ + 1, then the minimal Ai is obtained by means

of the Galois field. If + 1 < k ≤ (+ 1) + 1,

construct array Bi from CA(2; ⎡k/pw⎤ – 1,) by
means of the Galois field, and, then, construct Ai from
Bi by the recursive method for uniform arrays of cardi�
nality 2 (see Section 3.1.4).

• The recursive and greedy algorithms are better not
to combine, since, most likely, the resulting array for
such a configuration will be easier to obtain by other
methods. In other words, the example of configuration
(2; k, n) is not always generalized, because, although
any n can be represented as a product of powers of prime

numbers n = ... for k > (+ 1) + 1, as

p1
w1p2

w2 pr
wr

pi
wi pi

wi

pi
wi

pi
wi

pi
wi pi

wi pi
wi

pi
wi

p1
w1p2

w2 pr
wr pi

wi pi
wi

well as for many other k ≤ (+ 1) + 1, in the gen�

eral case, array Ai from CA(t; k,) can be con�
structed in less time by a greedy algorithm, which will
give us a nonminimal array. The multiplication with at
least one nonminimal array may yield an array that is
considerably larger than the array from CA(2; k, n)
constructed from the very beginning by, for example,
the greedy algorithm [37].

• Completion of minimal (or almost minimal)
arrays constructed by the direct methods (together
with recursive ones) for configurations with the lesser
number of parameters and parameter values. For
example, it is efficient to take a minimal array from
CA(2; k, n) and complete it by means of the IPO algo�
rithm [13] up to an array from CA(2; k + m, 2n), where
m is a small number of added parameters. Starting
from some m, construction by means of the greedy
algorithm of row�by�row addition with the use of, for
example, the DDA heuristics will be more efficient
[46].

• Use of the algorithm of removing redundant val�
ues from the minimal (or almost minimal) arrays con�
structed by the direct methods (together with recursive
ones) for configurations with the greater number of
parameters and parameter values. Suppose that we
have a minimal array from CA(2; k, n). From this

pi
wi pi

wi

pi
wi

Table 9. Algorithms for constructing nonuniform covering arrays

Algorithm Application domain Class of
the algorithm Time complexity and memory expenditures M E S

Removing
redundant
values

Further studies are needed Reduction Depends on the size of the initial array – + +

Double
projection

(2; n + 1 + t, (n – t)n + 1, st),
n is a degree of a prime number,
1 ≤ t ≤ n and 1 ≤ s ≤ n – t

Reduction O(N(k + 1)),
Memory: O(Nk) – + –

Combining
blocks

(2; k, n1 … nk) and k > max(n1 … nk).
Further studies are needed Recursive

O(n2 + k log2k), Memory: O(n2(n + 1) +

k(⎡logn + 1k⎤(n2 – 1) + 1)),where n ≥ d and

n = pm, p is a prime number, k ≥ 1

– – –

Nonuniform,
recursive,
t = 2

(2; l1 + … + lk, m1, 1, …, m1, 11, …,
mk, 1, …, mk, 1k), from (2; k, v1, …,
vk) with profile (d1, …, dk), and
(2; li, mi, 1, …, mi, 1i) with profile
(fi, 1, …, fi, 1i), i ∈ [1, k] and mij ≤ vi,
j ∈ [1, li]

Recursive

(N + M)L + ,

Memory: (N + M)L + ,

M = , L = , where

Mi is the number of rows in the initial arrays

– – –

IPO

Complement of (t; k, n1 … nk) to
(t; k + p, m1, …, mk + p), where
ni ≤ mi, i ∈ [1, k], ∃j: j ∈ [1, k],
nj < mj and/or p > 0

Greedy O(tk6dt(dt + k + dtk)),
Memory: O(dt(k logk + t)) – + +

Initial array
optimization

Row reduction in the initial array
(t; k, n1 … nk) of size N

Reduction,
optimization

O(Ne(M(tN + Nk + N – 1) + 6k)),

M is the number of repeated runs for
searching improvements,
Memory: O(Nk + dt)

– + –

Mili()
i 1=
k

∑

maxi 1=
k

Mili()

maxi 1=
k

Mi di–() lii 1=
k

∑

Ct 1–
k 1–

Ct
k

144

PROGRAMMING AND COMPUTER SOFTWARE Vol. 37 No. 3 2011

KULIAMIN, PETUKHOV

array, we can efficiently obtain an array from CA(2; k,
n1 ,..., nk), where ni ≤ n – m and m ≥ 0 is a small num�
ber, by applying the method of removing redundant
values.

• If the size of the array constructed by one of the
fast methods—multiple recursion or a greedy algo�
rithm with rapidly operating heuristics—is too large,
one can try to reduce it by means of the method of ini�
tial array optimization [28] or other optimization
methods (for example, simulated annealing). In cer�
tain cases, it may occur advantageous to generate a
large array and, then, spend some time for its reduc�
tion.

Our survey showed that none of the tools for con�
structing covering arrays uses in full measure all known
methods for optimal construction of almost minimal
arrays. As a result, in many particular cases, the well�
known tools construct arrays that are much larger than
the minimal ones, or do this for longer time, or require
more memory compared to algorithms that use heu�
ristics suitable for the given particular cases. The CTS
package uses a combined approach; however, this
solution can substantially be improved.

There is a need in the development of a new tool
that would analyze the initial configuration of a cover�
ing array and choose an optimal algorithm for this

configuration. To achieve the best results, this tool
should combine algorithms.

4. CONCLUSIONS

In this paper, we analyzed application domains of
various techniques and methods for constructing cov�
ering arrays. Advantages and disadvantages of the
methods discussed have been noted, and time com�
plexity and the required memory were estimated. We
considered direct, recursive, optimization, genetic,
and backtracking algorithms. We also discussed heu�
ristics that make it possible to reduce covering arrays
and their applicability domains.

Having analyzed methods for constructing cover�
ing arrays, we arrived at the conclusion that analysis of
the array configuration and combination of the con�
struction methods make it possible to extend classes of
the covering array configurations for which efficient
solutions exist. None of the existing tools (except for
CTS [16]) analyzes the array configuration and uses
advantages of known algorithms and heuristics for
efficient array construction. The solution suggested in
the CTS package uses only few efficient combinations
of algorithms.

One of the promising trends of future development
is analysis of the initial combination of the covering

Table 10. Methods that can easily be modified for constructing variable strength covering arrayss

Algorithm Application domain Class of
the algorithm Time complexity and memory expenditures M E S

Greedy,
row�by�row

Any configurations for which
there are no more efficient
methods. Extension of the ini�
tial array

Greedy

O(k(f(PR1) + f(PR2))d(f(VR1) + f(VR2))),
f(PR1), f(PR2), f(VR1), f(VR2) are functions
of the heuristic operation time,

Memory: O(dt(k logk + t))

– + +

Hill
climbing

Theoretical studies, minimal
array search

Greedy, optimi�
zation problem Exponential time and memory – – –

Tabu search Theoretical studies, minimal
array search

Greedy, optimi�
zation problem

O(NekNmaxd(k + logT + O(dkNmax(T + k2)))),
Memory: O(kNmaxT), T is the number of stored
arrays in the tabu search implementation

– – +

Simulated
annealing

Theoretical studies, minimal
array search

Greedy, optimi�
zation problem

O(Nek + O(k3Nmax)),
Memory: O(kNmax)

– – –

Great
deluge

Theoretical studies, minimal
array search

Greedy, optimi�
zation problem

O(Nek + O(k3Nmax)),
Memory: O(kNmax)

– – –

Genetic
algorithms

Theoretical studies, minimal
array search Genetic

O(NeMk2(Nmax + d2)),
Memory: O(MkNmax), M is the population size

– – –

Backtrack�
ing search

Theoretical studies, minimal
array search, extension of the
initial array

Backtracking
search

O(MNkf(CH)f(SH)), M ≥ k(N – Ninit) is the
number of arrays searched through, f(CH),
f(SH) are functions of the heuristic operation
time,

Memory: O(Nk2(N – Ninit) + dt), Ninit is the

size of the initial array

– + +

Ct 1–
k 1–

Ct
k

PROGRAMMING AND COMPUTER SOFTWARE Vol. 37 No. 3 2011

A SURVEY OF METHODS FOR CONSTRUCTING COVERING ARRAYS 145

array and selection of an optimal algorithm or combi�
nation of algorithms for this configuration. Principles
of combining various algorithms for constructing the
least covering array with the least time and memory
expenditures have been formulated in the paper.

REFERENCES
1. Zelenov, S.V. and Zelenova, S.A., Automatic Genera�

tion of Positive and Negative Tests for Testing Syntactic
Analysis Phase, Trudy Instituta Sistemnogo Program�
mirovaniya RAN (Proceedings of the Institute of System
Programming, RAS), 2004, vol. 8, no. 1, pp. 41–58.

2. Hoffman, D., Sobotkiewicz, L., Wang Hong�Yi,
Strooper, P., Bazdell, G., and Stevens, B., Test Gener�
ation with Context Free Grammars and Covering
Arrays, in Testing: Academic and Industrial Conf. � Prac�
tice and Research Techniques, Windsor, UK, 2009,
pp. 83–87.

3. Ammann, P. and Offutt, J., Using Formal Methods to
Derive Test Frames in Category�Partition Testing,
Safety, Reliability, Fault Tolerance, Concurrency, and
Real Time Security: Proc. of the 9�th Ann. Conf. on Com�
puter Assurance (COMPASS'94), 1994, pp. 69–79.

4. Cohen, D.M., Dalal, S.R., Fredman, M.L., and Pat�
ton, G.C., The AETG System: An Approach to Testing
Based on Combinatorial Design, IEEE Trans. Software
Engineering, 1996, vol. 23, no. 7, pp. 437–444.

5. Williams, A.W., Determination of Test Configurations
for Pairwise Interaction Coverage, Proc. of 13�th Int.
Conf. on Testing Communicating Systems (TestCom),
2000, pp. 59–74.

6. Williams, W. and Probert, R.L., A Measure for Compo�
nent Interaction Test Coverage, Proc. ACS/IEEE Int.
Conf. on Computer Systems and Applications, 2001,
pp. 301–311.

7. Bryce, R. and Colbourn, C.J., One�Test�at�a�Time
Heuristic Search for Interaction Test Suites, Proc. of
Genetic and Evolutionary Computation Conf. (GECCO),
Search�based Software Engineering track (SBSE), Lon�
don, 2007, pp. 1082–1089.

8. Calvagna, A. and Gargantini, A., Combining Satisfi�
ability Solving and Heuristics to Constrained Combi�
natorial Interaction Testing, Proc. of the 3�rd Int. Conf.
on Tests and Proofs, Zurich, 2009, pp. 27–42.

9. Documentation on Service WM Keeper Light. http:
//webmoney.ru/rus/about/demo/light/index.shtml

10. Patton, G.C., DAT (Defect Analysis Team) 1986–1990
Overview, Internal Bellcore Technical Memo, 1991.

11. Cohen, D.M., Dalal, S.R., Parelius, J., and
Patton, G.C., The Combinatorial Design Approach to
Automatic Test Generation, IEEE Software, 1996,
vol. 13, no. 5, pp. 83–87.

12. Seroussi, G. and Bshouty, N.H., Vector Sets for
Exhaustive Testing of Logic Circuits, IEEE Trans.
Information Theory, 1988, vol. 34, no. 3, pp. 513–522.

13. Lei, Y. and Tai, K.C., In�parameter Order: A Test Gen�
eration Strategy for Pairwise Testing, Proc. of the 3rd
IEEE High Assurance System Engineering Symp., 1998,
pp. 254–161.

14. Godbole, A.P., Skipper, D.E., and Sunley, R.A., T�
Covering Arrays: Upper Bounds and Poisson Approxi�

mations, Combinatorics, Probability Computing, 1996,
vol. 5, pp.105–118.

15. Martirosyan, S. and Van Trung, T., On T�covering
Arrays, Designs, Codes and Cryptography, 2004, vol. 32,
nos. 1–3, pp. 323–339.

16. Hartman, A. and Raskin, L., Problems and Algorithms
for Covering Arrays, Discrete Math., 2004, vol. 284,
pp. 149–156.

17. Colbourn, C.J., Combinatorial Aspects of Covering
Arrays, Le Matematiche (Catania), 2004, vol. 58,
pp. 121–167.

18. Grindal, M., Offutt, A.J., and Andler, S.F., Combina�
tion Testing Strategies: A Survey, Software Testing, Ver�
ification, Reliability, 2005, vol. 15, no. 3, pp. 167–199.

19. Hartman, A., Software and Hardware Testing Using
Combinatorial Covering Suites, Proc. of Graph Theory,
Combinatorics and Algorithms: Interdisciplinary Applica�
tions, 2005, pp. 266–327.

20. Colbourn, C.J., Keri, G., Rivas Soriano, P.P., Schlage�
Puchta, J.�C., Covering and Radius�Covering Arrays:
Constructions and Classification, Discrete Applied
Math., 2010, vol. 158, no. 11, pp. 1158–1180.

21. Colbourn, C.J., Strength Two Covering Arrays: Exist�
ence Tables and Projection, Discrete Math., 2008,
vol. 308, nos. 5–6, pp. 772–786.

22. Forbes, M., Lawrence, J., Lei, Y., Kacker, R.N., and
Kuhn, D.R., Refining the In�parameter�order Strategy
for Constructing Covering Arrays, J. Res. Nat. Inst.
Stand. Tech., 2008, vol. 113, no. 5, pp. 287–297.

23. Konstantinov, A.V., Automation of Test Construction
with the Use of Combinatorial Methods, MS Thesis,
Moscow State University, 2007.

24. Cohen, M.B., Dwyer, M.B., and Shi, J., Constructing
Interaction Test Suites for Highly�Configurable Sys�
tems in the Presence of Constraints: A Greedy
Approach, IEEE Trans. Software Eng., 2008, vol. 34,
no, 5, pp. 633–650.

25. Cohen, M.B., Dwyer, M.B., and Shi, J., Exploiting
Constraint Solving History to Construct Interaction
Test Suites, Testing: Academic and Industrial Conference
Practice and Research Techniques � MUTATION, 2007,
pp. 121–132.

26. Czerwonka, J., Pairwise Testing in Real World, 24�th
Pacific Northwest Software Quality Conference, 2006.

27. Yan, J. and Zhang, J., A Backtracking Search Tool for
Constructing Combinatorial Test Suites, J. System Soft�
ware, 2008, vol. 81, no. 10, pp. 1681–1693.

28. Nayeri, P., Colbourn, C.J., and Konjevod, G., Ran�
domized Postoptimization of Covering Arrays, Lecture
Notes in Computer Science, Springer, 2009, vol. 5874,
pp. 408–419.

29. Edelman, A., The Mathematics of the Pentium Divi�
sion Bug, SIAM Review, 1997, vol. 39, no. 1, pp. 54–67.

30. Greene, C., Sperner Families and Partitions of a Par�
tially Ordered Set, Combinatorics, Hall, Jr., M. and van
Lint, J., Eds., Dordrecht, Holland, 1975, pp. 277–290.

31. Lidl, R. and Niederreiter, H., Finite Fields, Reading,
Mass.: Addison�Wesley, 1983. Translated under the title
Konechnye polya, Moscow: Mir, 1988.

146

PROGRAMMING AND COMPUTER SOFTWARE Vol. 37 No. 3 2011

KULIAMIN, PETUKHOV

32. Chateauneuf, M. and Kreher, D., On the State of
Strength�three Covering Arrays, J. Combinatorial
Designs, 2002, vol. 10, no. 4, pp. 217–238.

33. Colbourn, J., Martirosyan, S.S., Mullen, G.L.,
Shasha, D., Yucas, J.L., and Sherwood, G.B., Products
of Mixed Covering Arrays of Strength Two, J. Combina�
torial Design, 2006, vol. 14, no. 2, pp. 124–138.

34. Meagher, K. and Stevens, B., Group Construction of
Covering Arrays, J. Combinatorial Design, 2005, vol. 13,
no. 1, pp. 70–77.

35. Yin, J., Constructions of Difference Covering Arrays,
J. Combinatorial Theory (A), 2003, vol. 104, no. 2,
pp. 327–339.

36. Harari, F., Graph Theory, Reading, Mass.: Addison�
Wesley, 1969. Translated under the title Teoriya grafov,
Moscow: Mir, 1973.

37. Tables of the Known Least Covering Arrays. http:
//www.public.asu.edu/~ccolbou/src/tabby/catable.html.

38. Sloane, N., Covering Arrays and Intersecting Codes,
J. Combinatorial Designs, 1993, vol. 1, no. 1, pp. 51–63.

39. Cohen, M.B., Colbourn, C.J., and Ling, A.C.H., Con�
structing Strength Three Covering Arrays with Aug�
mented Annealing, Discrete Math., 2008, vol. 308,
no. 13, pp. 2709–2722.

40. Colbourn, C.J., Martirosyan, S.S., Van Trung, T., and
Walker II, R.A., Roux�type Constructions for Covering
Arrays of Strengths Three and Four, Designs, Codes
Cryptography, 2006, vol. 41, no. 1, pp. 33–57.

41. Stevens, B. and Mendelsohn, E., New Recursive Meth�
ods for Transversal Covers, J. Combinatorial Designs,
1999, vol. 7, no. 3, pp. 185–203.

42. Stevens, B., Ling, A., and Mendelsohn, E., A Direct
Construction of Transversal Covers Using Group Divis�
ible Designs, Ars Combin., 2002, vol. 63, pp. 145–159.

43. Cormen, T., Leiserson, C., Rivest, R., and Stein, K.,
Introduction to Algorithms, The MIT Press, 2001, 2nd
ed. Chapter 16: Greedy Algorithms.

44. Calvaga, A. and Gargantini, A., IPO�s: Incremental
Generation of Combinatorial Interaction Test Data
Based on Symmetries of Covering Arrays, Proc. of the

IEEE Int. Conf. on Software Testing Verification and Val�
idation Workshops, Denver, Colorado, 2009.

45. Cohen, M., Dalal, S.R., Fredman, M.L., and
Patton, G.C., The Automatic Efficient Test Generator
(AETG) System, Proc. of the 5�th Int. Symp. on Software
Reliability Engineering, 1994, pp. 303–309.

46. Colbourn, C.J., Cohen, M.B., and Turban, R.C., A
Deterministic Density Algorithm for Pairwise Interac�
tion Coverage, Proc. of the IASTED Int. Conf. on Soft�
ware Engineering, 2004, pp. 242–252.

47. Tung, Y.�W. and Aldiwan, W.S., Automating Test Case
Generation for the New Generation Mission Software
System, Proc. IEEE Aerospace Conf., 2000, pp. 431–
437.

48. Jenkins, B., Tool for Pairwise Testing. http://burtlebur�
tle.net/bob/math/jenny.html, 2005.

49. Pairwise Testing, Combinatorial Test Case Generation.
http://www.pairwise.org/tools.asp.

50. Nurmela, K., Upper Bunds for Covering Arrays by
Tabu Search, Discrete Applied Math., 2004, vol. 138,
nos. 1–2, pp. 143–152.

51. Stardom, J., Metaheuristic and the Search for Covering
and Packing Arrays, MS Thesis, Simon Fraser Univer�
sity, 2001.

52. Stevens, B., Transversal Covers and Packings, Ph. D.
Thesis, Mathematics, Univ. of Toronto, 1998.

53. Cohen, M.B., Colbourn, C.J., and Ling, A.C.H., Aug�
menting Simulated Annealing to Build Interaction Test
Suites, Proc. of Int. Symp. Software Requirements Engi�
neering, (ISSRE 2003), 2003, pp. 394–405.

54. Dueck, G., New Optimization Heuristic – The Great
Deluge Algorithm and the Record�To�Record Travel,
J. Computational Phys., 1993, vol. 104, pp. 86�92.

55. Dueck, G. and Scheuer, T., Threshold Accepting: A
General Purpose Optimization Algorithm Appearing
Superior to Simulating Annealing, J. Computational
Phys., 1990, vol. 90, pp. 161–175.

56. Rodriguez�Tello, E. and Torres�Jimenez, J., Memetic
Algorithms for Constructing Binary Covering Arrays of
Strength Three, Proc. of Artificial Evolution 2009,
pp. 86–97.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

