
ISSN 0361�7688, Programming and Computer Software, 2009, Vol. 35, No. 4, pp. 212–222. © Pleiades Publishing, Ltd., 2009.
Original Russian Text © V.V. Kuliamin, 2009, published in Programmirovanie, 2009, Vol. 35, No. 4.

212

1. INTRODUCTION

During last two decades, we witnessed great
progress in the software development technology. This
progress, in particular, greatly improved productivity
of the programmers in terms of the amount of code
created in a time unit, which results in the increase of
most complicated program systems up to tens of mil�
lions of code lines [1, 2]. However, the quality of pro�
grams almost has not been changed: as before, the
average number of errors per thousand lines of code
prior to testing varies from 10 through 50 [3]. Thus,
the improvement of the software development meth�
ods, on the one hand, allows us to create more and
more complicated systems necessary for modern sci�
ence, economy, and state organizations and, on the
other hand, increases the number of defects in these
systems and risks associated with this.

Software defects and errors can be eliminated by
means of verification, which checks mutual consis�
tency of all design artifacts—project and user docu�
mentation, source code, deployment configurations,
etc.—and their correspondence to the requirements
to the given system and relevant standards. Methods of
software verification are also rapidly developing, but
not as fast as the development technologies. There�
fore, the ultimate complexity of the software which
can be made reliable and functioning correctly is con�
siderably less than that demanded by a modern society.

Methods of software verification can be divided
(this division is more historical than based on their
essence) [4] into formal methods, which rely on rigor�
ous analysis of mathematical models of the artifacts
being checked and the desired properties; static analy�
sis methods, which seek errors without running the
software; dynamic analysis methods, which verify
actual behavior of the system under study in some sce�
narios of its operation; and review (inspection),which is
performed by experts based on their experience and
knowledge.

All these methods have their advantages and disad�
vantages and different application domains, and their
efficiency may differ significantly in different contexts.
Valuable verification of large�scale complex systems is
impossible without combined use of all these methods,
because only their combination can overcome disad�
vantages of the individual methods. In so doing, on
each level of system consideration and for each kind of
components, it is desirable to select the most effective
method that results in the most reliable contribution
into the system quality estimate on the whole and
requires minimum expenditures. Unfortunately, for
the present there is no general approach to comparing
efficiency of different verification methods and their
combinations in different contexts as applied to real
software systems.

To manage the permanently growing complexity of
real systems, a great number of various verification
methods and techniques, especially formal and based
on static analysis, have been created during last 20–
30 years [4]. However, these methods most often can
effectively be used only by specialists in the corre�
sponding fields. Many works of such kind were con�
fined to formulation of ideas and algorithms. Occa�
sionally, they resulted in prototype implementations,
the goal of which was to demonstrate feasibility of the
proposed technique on several examples. However,
these prototypes cannot be used for industrial software
development, where all tools should efficiently work in
a very wide context, since the researchers usually have
no resources and time to develop industrial applica�
tions.

In the rare cases when such a practical tool is cre�
ated, it includes usually one or two dozens of different
techniques and is capable of solving two or three veri�
fication problems. On the other hand, the process of
industrial software development requires solving sev�
eral dozens of such problems, whereas the majority of

Integration of Verification Methods for Program Systems
V. V. Kuliamin

Institute for System Programming, Russian Academy of Sciences, ul. Solzhenitsyna 25, Moscow, 109004 Russia
e�mail: kuliamin@ispras.ru
Received December 24, 2008

Abstract—In the paper, an approach to constructing an extensible framework for the verification of program
systems is suggested. In the author’s opinion, it will facilitate application of modern rigorous verification
methods to practically significant programs, the complexity of which permanently grows. This framework can
also become a test harness for testing and adjustment of new techniques of formal verification and static anal�
ysis on various industrial software packages.

DOI: 10.1134/S0361768809040057

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 4 2009

INTEGRATION OF VERIFICATION METHODS 213

organizations manage to successfully introduce and
start to actively use only two or three tools of this kind.

Another difficulty is the growing complexity of the
creation and approbation of new verification tech�
niques. All environment required for their opera�
tion—tools for the source code analysis, descriptions
of formal models, libraries for work with internal code
and model representations, tools implementing vari�
ous code and model analyses, reporting tools—can�
not be developed from scratch. To check feasibility of
certain ideas, the researcher composes this environ�
ment from ready heterogeneous components and
libraries. In the best case, one creates a prototype
capable of coping with a couple of special examples.
However, this way does not work when it is required to
create an environment that could be used for analyz�
ing feasibility and effectiveness of a new idea in a wide
range of situations and on different kinds of applica�
tions and requirements to them. Therefore, the major�
ity of new ideas are used in special circumstances only,
and their effects in wider contexts remain unclear and
unpredictable.

A way out of the difficulty is to develop a unified
extensible framework for the verification of program
systems that provides a common framework for solving
verification problems and libraries of ready compo�
nents implementing standard techniques. Such a
framework could significantly simplify integration of
modules implementing different verification tech�
niques owing to unified extension interfaces.

By means of this framework, the researchers could
greatly reduce expenses required for the testing of new
methods and analysis of their applicability in various
situations. The developers in industry could use it for
integrating the desired set of techniques in the frame�
work of a single tool and for efficient transfer of these
techniques into practical use.

The existence of numerous synthetic verification
methods evidences feasibility and efficiency of inte�
gration of different software verification methods in
various situations.

2. SYNTHETIC SOFTWARE
VERIFICATION METHODS

The synthetic verification methods use different
techniques (according to the above classification) and
combine ideas of different approaches to achieve bet�
ter verification efficiency in terms of the required
resources and confidence of the results obtained.

These methods are currently classified into the fol�
lowing groups:

• Static analysis is based on automated construc�
tion of certain models of the code of the system under
check and verification of correctness of these models
with respect to some set of rules (e.g., any variable
must be initialized before every use), as well as search�
ing certain errors by appropriate patterns (e.g., deref�

erencing of a pointer is a correct operation only after it
has been checked that it is not null). For the models,
labeled control flow and data flow graphs are usually
used. Currently, specific kinds of static analysis are fre�
quently used, where formal models and various tools
for resolving constraints are applied for deeper analysis
of the code features.

� Extended static checking [5–10] checks corre�
spondence of the code to the software requirements,
which are also written in the code, for example, as
comments to its separate elements (procedures, data
types, and class methods). Based on results of the code
analysis, formal models of its behavior are automati�
cally constructed. The conformance between require�
ments and these models is usually checked by applying
theorem proving and solvers. In this approach, the
static analysis is integrated with one of the formal
methods, namely, with the theorem proving. Exam�
ples of such synthesis are the ESC/Java2 [6, 7], Boogie
[8], Saturn [9], and Calysto [10] tools.

� Static analysis based on automatic abstraction [11,
14–19]. The use of such methods suggests that, on the
basis of results of the static analysis of the code, more
abstract (and, hence, simpler) models of the operation
of the software under check are automatically con�
structed. Then, it is verified whether these models
meet certain properties by using model checking or
specialized solvers. In this case, the static analysis is
integrated with the theorem proving or model check�
ing. The difference of this approach from the previous
one is that the properties being checked have the form
of general rules of code correctness—only not�null
pointers can be subjected to dereferencing, elements
of an array with indices exceeding array dimensions
cannot be accessed, resource capture on any path
should be followed by its release, and the like—rather
than are determined by requirements specific to the
component under check. Accordingly, such rules are
fixed for a given tool. Sometimes, partial verification
of rules from some sufficiently large list is possible.

An example of the abstract models is Boolean mod�
els [11], i.e., sets of flags that represent information
required for analysis of program properties (for exam�
ple, on branching and loop conditions) in a concise
form. Another example is octagons [12], i.e., sets of
constraints of the form x ± y ∈ [a, b], where x and y are
variables and a and b are constants. Such sets of con�
straints can be resolved more efficiently compared to
arbitrary sets of linear inequalities. Some tools of this
type use counterexample�guided abstraction refinement
(CEGAR) [13]: if a requirement to a model is violated,
an attempt is made to build the corresponding sce�
nario of code operation; if this is impossible because of
simplifications made in the model, elements of the
code preventing execution of this scenario are deter�
mined, and refinements that describe operation of
these elements more accurately are introduced into
the model; after the refinement, it is checked again
whether the model satisfies the given property. As a

214

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 4 2009

KULIAMIN

result, the tool either approves the conformance to the
requirement, or finds a counterexample, or stops its
operation upon expiration of some time or exhausting
a resource without arriving to certain conclusions.
Examples of tools based on the static analysis with
automatic abstraction are PolySpace Verifier [14, 15]
and ASTREE [16, 17]. Among the tools supporting
the counterexample�guided abstraction refinement
are the well�known SLAM [11] and BLAST [18] tools,
as well as a lesser�known MAGIC [19].

• When using synthetic structural testing [20–29],
after the first randomly selected test, all other tests are
generated automatically to ensure coverage of the code
elements that have not been covered earlier. Appropri�
ate test data are selected with the help of solvers that
take into account symbolic information on data con�
straints that prevent the tests passed from checking the
code that has not been covered yet. To construct the
desired sequences of actions, random generation
guided both by the above�mentioned symbolic infor�
mation and heuristic abstractions reducing the state
space of the tested system is used. In this approach,
static code analysis, structural testing, and theorem
proving performed by solvers are integrated. Examples
of such tools are CUTE and jCUTE [22],
Crash’n’Check [23] and DSDCrasher [24], Rostra
and Symstra [25], UnitMeister [26] and Pex [27], Exe
[28] and RANDOOP [29].

• Model based testing [30–33] combines develop�
ment of formal models of the requirements to the ver�
ified software and generation of tests on the basis of
these models. In this case, the model structure serves
as a basis for the test adequacy criteria, and model
restrictions on the correct results of the software oper�
ation are used as test oracles evaluating correctness of
the software behavior in the course of testing. Surveys
of numerous model based testing tools can be found in
[30, 31, 33, 34]. In the last two approaches (or inde�
pendent of them), specific techniques of test genera�
tion based on various verification methods are used.

� Test generation based on constraint solving tech�
niques [35–37]. In the development of tests on the
basis of the test adequacy criteria, the so�called test
objectives are often formulated. The latter are specific
situations in which the behavior of the system under
test should be verified to make sure that it works cor�
rectly. A test objective is formulated as a set of con�
straints imposed on the system states and the data of
the actions performed in the course of testing. To gen�
erate a test that achieves this objective, special solvers
can be used. Such a solver either automatically finds
the desired data and a sequence of operation calls by
solving the given system of constraints or advises that
the system cannot be solved, i.e., the given test objec�
tive cannot be reached and there is no sense to gener�
ate tests aimed at it.

� Generation of tests from counterexamples using
model checking tools [38–41]. Another way of test gen�
eration is to formulate negations of the constraints

specifying the test objective as a property that can be
either checked or disproved by using model checking
tools. If this property is proved, then the test objective
cannot be reached; if it is disproved, the tool con�
structs a counterexample that serves as a required test
in the given case.

• Runtime verification (passive testing) of formal
properties [42–45] also uses formal models of the
requirements for evaluating correctness of the behav�
ior of the tested system but does this only in the course
of its ordinary operation, without using tests specially
constructed for this purpose. Thus, in this approach,
the model checking and runtime verification are inte�
grated. Sometimes, the runtime verification is carried
out in the framework of symbolic execution of the
code rather than in the course of its ordinary opera�
tion. Examples of the runtime verification tools are
Temporal Rover [46] and Java Path Finder [47, 48],
with the latter performing symbolic execution of the
programs under check.

As can be seen, all synthetic methods, in one way or
another, try to combine advantages of different
approaches to the verification, while avoiding their
disadvantages. Currently, there exist many examples of
successful development of such methods and their
practical applications. Some of them are listed below.

• Numerous NASA projects on the development
of software for control of space satellites, shuttles, and
specialized research vehicles carried out with the help
of model checking and test generation tools and runt�
ime verification [49–51]. The tools used in these
projects include model checking tool Spin [52, 53],
test generator T�VEC [54, 55], and Java PathFinder
[47, 48].

• Development and use of the Static Driver Verifier
tool in Microsoft. This tool uses static analysis based
on automatic abstraction for verification of correct�
ness of Windows drivers operation [56, 57]. First, the
model checking tool SLAM [11] was used in the
project. Then, it was considerably revised to support
analysis of arbitrary code in C and supplemented by a
set of rules for correct use of functions of the Windows
kernel in the drivers.

• Internal Microsoft project on formal specifica�
tion and generation of test suites for various client–
server protocols used in the products of this company
[58]. In this project, the SpecExplorer tool [59, 60]
developed by Microsoft Research was used, and the
amount of work on the analysis and formalization of
protocol�related documentation was estimated to be
several dozens of person�years. A clear demonstration
of interest of industry in the development of software
verification methods is the work of the Research in
Software Engineering (RiSE) group [61] in Microsoft
Research: the most actively developing fields of its
research are just various synthetic verification meth�
ods.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 4 2009

INTEGRATION OF VERIFICATION METHODS 215

• Recent and current projects at the Institute for
System Programming, Russian Academy of Sciences,
on test generation on the basis of formal models of the
operating system kernel, basic operating system librar�
ies, telecommunication protocols of the IPv6 family,
compiler optimizing units [62–65], which use mainly
a family of model based testing tools UniTESK [33].

• Use of formal verification methods and extended
static analysis tools in the development of the avionics
systems in Airbus and Boeing [16, 17, 66]. In particu�
lar, in Airbus, a static analysis tool based on the
ASTREE formal models was used [16].

• Use of formal models, model based testing, and
runtime verification in the development of software for
smart cards [67, 68].

All these examples approve efficiency of integra�
tion of different verification methods in practice. Nev�
ertheless, in spite of the achievements, each of the syn�
thetic approaches uses only a portion of the available
potential and does not provide one with a unified inte�
gration framework for the entire variety of the software
verification techniques. Moreover, certain heteroge�
neity of these approaches does not allow us to ade�
quately compare their characteristics when they are
applied to complex program systems.

3. APPROACH TO CONSTRUCTING
EXTENSIBLE SOFTWARE VERIFICATION

FRAMEWORK

Problems associated with the growing complexity
in the development and testing of the software verifica�
tion methods and the necessity in the creation of an
extensible framework that would allow one to integrate
different techniques and tools have been already dis�
cussed by the researchers (see, for example, [69]).
However, no systematic approach to constructing such
a framework has been presented in the literature yet.

To be implemented in practice, such an approach
should suggest adequate solutions for the following
methodological and organizational problems.

• Problems of interaction of various verification
methods with the requirements analysis within the
software development processes.

• Place and techniques of using the software
reviews within the software verification approach.

• Use of models, languages, and notations of dif�
ferent kinds and methodological and technical diffi�
culties of their integration in a unified framework.

• Selection of basic architecture of the integrated
verification framework.

• Organization of work on the development of such
a framework.

These problems are discussed in detail in what fol�
lows.

3.1. Analysis of Requirements

No verification is possible without preliminary
clear formulation of the requirements being checked.
In practice, verification almost always begins with an
analysis of the requirements to the system and, as a
rule, with their partial formalization.

However, there does not exist a unique approach to
analyzing and representing the requirements, and,
most likely, such an approach will not be created in the
nearest future. Then, is it possible to construct a uni�
fied verification framework that integrates different
approaches and uses different techniques for analyzing
requirements?

To this end, we propose to leave the problems of the
requirements analysis beyond the scope of the frame�
work discussed and define a clear interface between it
and the activity on requirements extraction. To justify
adequacy of the verification performed for the soft�
ware users and customers, it is required that each ele�
ment of the models used and a section of the report on
defects found could be associated with an element of
the requirements formulated by the users and custom�
ers; i.e., the original requirements should be traceable.
Therefore, leaving aside problems related to establish�
ing various relationships between the requirements,
ensuring their adequacy and completeness, and for�
malizing informal requirements, we may consider the
requirements as a set of some objects with unique
identifiers that make it possible to associate model ele�
ments, tests performed, and defects found with these
objects. The nature of these objects—whether they are
texts, formulas, images, schemes, etc.—is not impor�
tant in this case.

Thus, in the verification framework, a mechanism
for requirement tracing should be supported, which
makes it possible to associate their unique identifiers
with various verification artifacts and their separate
elements.

3.2. Place of Reviews in the Integrated Approach
to Software Verification

The form of using the reviews for software verifica�
tion within the considered framework is an important
issue. Review is applicable to any properties of the
software and any artifacts, although, for different pur�
poses, different kinds of reviews are used. Review
makes it possible to reveal errors of all kinds on early
stages, minimizing thus time of defect existence in the
software lifecycle and resources required for eliminat�
ing it. Empirical studies show that the efficiency of
code inspection (even that which does not involve
other development artifacts), measured as the ratio of
the number of defects found to the resources spent, is
higher than that of other verification methods.
According to various reports, from 50 to 90 per cent of
errors during the software lifecycle can be detected by
means of review [70–72]. High efficiency of the

216

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 4 2009

KULIAMIN

review can be explained by the ability of a human to
find possible defects in uncertain situations without
clear and complete understanding of the requirements
to the software.

At the same time, the review cannot be automated
and always require participation of people. Moreover,
the review efficiency greatly depends on their experi�
ence and motivation, as well as on the organization of
the development process and professional communi�
cations between the participants. This imposes serious
restrictions on the distribution of resources in the
projects and may lead to conflicts if the organizational
aspects of the review are neglected.

In the considered framework, it is suggested to
maximally use formalized representations for the
majority of the development artifacts in order to be
able to apply one or another automated analysis to
them. The reviews in this case also give rise to good
results; however, they are most advantageous when
used in informal contexts, since, in such situations, a
man is more effective than any tool in searching prob�
lems.

Therefore, review should be fully used in the course
of the requirement analysis and formalization, which
makes it possible to combine advantages of different
verification methods in the best way. The reviews are
most effective just on the stage of defining, refining,
and analyzing the requirements, where all other meth�
ods do not work. On the other hand, automated tech�
niques are more effective in the analysis of formalized
artifacts.

3.3. Use of Different Models

One of the most important issues arising in the
connection with the use of formal models for the veri�
fication is related to the types of models supported by
the framework discussed. The answer to this question
affects the following characteristics of the framework.

• Expressive capabilities of models, i.e., variety of
the requirement types and the properties that can be
described in these models; possibility of system
description on different abstraction levels.

• Scalability of models and restrictions on system
complexity that can be described by means of these
models.

• Supported verification methods (some methods
and techniques can be applied to models of only cer�
tain types).

• Convenience of work with models, the amount of
man�hours required to study the framework and
incorporate it into industrial process of software devel�
opment.

Analysis of the experience in the verification of
industrial software in various organizations and
projects [32, 33, 49, 57, 58, 62, 64] allows us to con�
clude that contract and automaton models are most

appropriate for the description of significant systems
used in practice.

Contract models formulate requirements to a com�
ponent as an abstract description of the structure of its
internal state, a set of invariants determining correct
states, and a set of pre� and postconditions for all oper�
ations of the component specifying, respectively, their
domains and constraints on the correct results and
modifications of states when calling these operations.
Contract models make it possible to accurately define
responsibilities of different sides: the client that access
this component is responsible for the fulfillment of the
preconditions of the operation, whereas the compo�
nent itself is responsible for the fulfillment of the post�
conditions and invariants.

Automaton models describe behavior of the system
(or its component) by specifying a set of its states,
stimuli by means of which one can affect it, possible
reactions, and a set of transitions between the states,
each of which can be invoked by a certain stimulus, be
related to some reaction, or be an internal transition
(i.e., one that occurs without any visible external
events). The assignment of stimuli and reactions to
transitions may be different. In the simplest case, each
transition corresponds to a pair stimulus–reaction.
A transition may be internal or related only to either
one stimulus or one reaction. In automaton models
used in practice, stimuli and reactions may contain
rather complex data structures.

The contract models make it possible to give more
declarative and abstract descriptions of the system
behavior. Moreover, unlike automaton models, they
are more appropriate for describing non�determinism
or behavior associated with transformation of complex
data structures. However, they are not executable and
not convenient for describing composition of the com�
ponents. The automaton models are executable, and
the composition of the components is defined for
these models. In addition, they are more appropriate
for using model checking methods and for generating
test sequences.

Models of both types are extensively used for the
description of program systems of high complexity
(including the component�wise description) and are
well�scaleable: contract models due to the possibility
of working on different abstraction levels and automa�
ton models owing to the use of composition for con�
struction of system specification from specifications of
its components.

3.4. Support of Different Languages and Notations

Many verification tools are designed for working
with certain languages of model and requirement rep�
resentation. When integrating different methods, we
may pose the question of what languages to use at all
and support of what languages should be implemented
at first.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 4 2009

INTEGRATION OF VERIFICATION METHODS 217

The experience acquired in the large number of
projects on verification of industrial software [32, 33,
64] makes us conclude that it is preferable to use lan�
guages similar to widely used programming languages
that are customary to the developers. Therefore, for
representing models in the considered framework, one
should use languages that are minimal extensions of
programming languages. Later, one may add support
for certain languages of formal specifications.

Support of different languages and notations
should be implemented on the level of some common
intermediate representation of language constructs
that is used by all analysis tools, but not users them�
selves. The development of such intermediate repre�
sentation that is applicable to many different lan�
guages is not a trivial task, especially if languages that
differ significantly in terms of basic paradigms are
used. As experience shows [73, 74], such a common
representation of programs greatly depends on the
problems solved on its basis, and the reuse of represen�
tations developed in other projects is hardly possible.
Therefore, an interface for the intermediate represen�
tation used by the framework will, most likely, be
developing gradually and will rely on the working
experience acquired in the course of its development.
The set of concepts itself on the basis of which such a
representation can be created is not clear at the
moment: it should be determined in the course of cre�
ation of the verification framework described in this
paper.

In spite of the above difficulties, available standard
or widely used high�level libraries should be used for
work with the intermediate representation for a num�
ber of languages. For example, for the C and C++ lan�
guages, the intermediate representation used in the
GCC compiler (the trees level [75]) becomes a de facto
standard. The great advantage of using results of such
projects is that their support and development in the
near future are guaranteed.

3.5. Basic Architecture of the Verification Framework

The architecture of the verification framework dis�
cussed—a set of its basic components, their external
interfaces and interaction rules, and rules for adding
new components—determines one of the most
important features of this framework, namely, its
extensibility. On the other hand, solutions related to
the basic principles of the framework construction
may affect possibility of its integration with other soft�
ware development tools.

First of all, to facilitate its use in the industrial soft�
ware development, the verification framework should
be built into one of the widely used development
frameworks, such as Eclipse or Microsoft Visual Stu�
dio. Eclipse [76, 77] is the most appropriate integra�
tion framework for the first versions, since it possesses
a huge set of extension modules, including verification
tools and modules for support of various programming

languages. In addition, the process of creating such
modules is well documented.

In addition to the external environment, in the
context of which the verification framework has to
work, it is required to determine its frame, i.e., some
base set of components implementing a basic set of
functions and supporting main data flows inside the
system. To this frame, other components supporting
auxiliary and less significant functions will be added.

As the basis for constructing the verification frame�
work, we suggest using an architecture frame of
model�based testing tools. This is explained by the fact
that such testing is one of the most complicated verifi�
cation processes from the point of view of its organiza�
tion: the nomenclature of the activity types in this pro�
cess is the widest one. Usually, in the course of testing,
it is required to do the following.

• To define a behavior model of the system under
test, which formalizes requirements to the behavior.

• To analyze model structure for choosing cover�
age criteria and separate test objectives and defining
these criteria and objectives.

• To construct a test execution environment
(which includes monitoring and protocoling external
actions, system reactions, and, possibly, internal
events) and test oracles (program components deter�
mining whether the observed behavior of the system
corresponds to that defined by the model). Usually,
such an environment consists of a library supporting
test execution, a set of test oracles for all components
under check, and a set of adapters relating these com�
ponents to their oracles. In the majority of cases, the
oracles are generated automatically from a model con�
structed earlier.

• To construct (automatically or with the help of a
man) a set of test scenarios determining sequences of
calls of various operations of the system being tested,
or sequences of messages or signals to be sent to it, or
data transmitted as parameters of the operations and
messages.

• To execute test scenarios protocoling all infor�
mation related to the correspondence of the observed
system behavior and its model, as well as the situations
covered in the course of testing.

• To carry out analysis of the test results, in the
course of which errors in the system or its model are
revealed and analyzed (which manifest themselves as
discrepancies between the expected and actual behav�
iors), the test coverage obtained is analyzed, and a
decision is made on either generation of additional
tests or finishing the activity.

In order to incorporate other synthetic verification
methods in the model�based architecture frame, it is
required to add modules for analyzing the source code
of the components under test (all other required com�
ponents are, in fact, already available in it [78]).

A preliminary variant of the architecture of a uni�
fied extensible software verification framework is

218

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 4 2009

KULIAMIN

Requirements Models of
behavior

Source code

Requirements
base

Development environment

Intermediate
representation of the
modeling language

Interface to the
requirements

base

Support of creating
and editing models

and adapters

Intermediate
representation of the

programming language

Support of various
types of model

analysis

checkers, etc.)
(solvers, model

Generation of oracles
for testing and

monitoring
Generation of test
data and scenarios

Test
scenarios

System
under test

Support of test
execution and

monitoring

Report
generation

Reports on
verification results

Sign marks components that should have user interface

Fig. 1. Preliminary architecture of an extensible software verification framework.

shown in Fig. 1. Only large�scale components are pre�
sented in the figure. A more detailed architecture
design may require division of these components into
smaller parts and addition of other modules solving
auxiliary tasks.

Among all synthetic verification methods, the
extended static checking is the worst one with respect
to scalability, since description of detailed constraints
(including loop invariants) for a large code requires
too much expenditure. However, all other methods
can be supported on the basis of the suggested archi�
tecture.

In the framework of this architecture, model�based
testing can be performed, since the majority of its
components are taken from a typical architecture of
tools for such testing. Monitoring of formal properties
is organized on the basis of a subset of these compo�

nents: for this subset, there is no need to generate and
perform tests; it is sufficient to run the system under
test in the framework of the testing and monitoring
support environment with the use of test oracles.

Scenarios of execution of the static analysis based
on automatic abstraction and synthetic structural test�
ing are depicted in Fig. 2. For each method, the order
of execution of separate actions—analysis of the
source code, creation of a model on its basis, analysis
of the model with the help of specialized techniques,
test generation, etc.—is shown in the figure.

Steps 3 and 4 in the static analysis based on auto�
matic abstraction are performed in a loop until the
code correctness is proved, or a counterexample is
found, or the resources assigned for the check are
exhausted. Steps 4–7 in the synthetic structural testing
are also performed in a loop until a set of tests is

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 4 2009

INTEGRATION OF VERIFICATION METHODS 219

obtained that ensures the desired coverage or the
resources assigned for the test generation are
exhausted.

3.6. Organization of the Verification
Framework Development

The development of the above�described verifica�
tion framework will require considerable resources,
even in the case of using available components imple�
menting various types of analysis, test generation algo�
rithms, or parsing code in certain programming lan�
guages. Because of the huge amount of the required
labor, the development of the framework by a small
group of people seems unrealistic.

Therefore, the development of such a framework
can be organized as an open project in the Internet
with the participation of any developer who agrees to
follow suggested architectural solutions and other
rules of the project.

To begin such a project, it is important to prepare a
general architecture of the framework and an imple�
mentation of some significant part of its functionality.
As the first variant, the unit testing system TestNG [79,
80] extended by model�based tests generation means
can be considered. TestNG is a popular framework for
development of unit and integration tests for Java
applications, which allows one to create test sets for
sufficiently complex systems and flexibly configure
their execution. In addition, TestNG has an open

Requirements Models of
behavior

Source code

Requirements
base

Development

Intermediate
representation of the
modeling language

Interface to the
requirements

base

Support of creating
and editing models

and adapters

Intermediate
representation of the

programming language

Support of various
types of model

analysis

checkers, etc.)
(solvers, model

Generation of oracles
for testing and

monitoring
Generation of test
data and scenarios

Test
scenarios

System
under test

Support of test
execution and

monitoring

Report
generation

Reports on
verification results

environment
1 1

2

2

3�4

3

4

5

6

7

5

8

1

1

Static analysis based on automated abstraction with step numbers

Synthetic structural testing with step numbers

Fig. 2. Support of various verification methods by the proposed architecture.

220

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 4 2009

KULIAMIN

code. Its extension by model�based testing capabilities
and, at least, one or two types of model and code anal�
yses (for example, those implementing synthetic
structural testing in a number of situations) makes it
possible to clearly demonstrate integration capabilities
of the proposed approach.

4. CONCLUSIONS

In the paper, an approach to the integration of var�
ious software verification methods has been suggested.
The goal is to considerably increase complexity of pro�
gram systems, for which verification by rigorous meth�
ods based on formal models in an explicit or implicit
form can yield valuable results under acceptable
expenditures.

The proposed approach is based on combining sev�
eral synthetic verification methods (extended static
checking, synthetic structural testing, model�based
testing, and runtime verification of formal properties)
successfully used in practice in the unified extensible
software verification framework. As a base architecture
for such a framework, we suggest using the well�known
model based testing tools architecture [48] extended
by additional components for analysis of the source
code of the components under test and for various
types of model analyses, including various solvers.
Model�based testing is chosen to be a foundation of
the proposed architecture, since it is the most compli�
cated verification method among those being com�
bined.

A number of methodical and technical solutions,
which, in the author’s opinion, make the development
of the discussed verification framework realizable and
facilitate its application to solving practical problems
of industrial software verification, are also presented.

Another possible application of such a framework is
testing and adjustment of numerous new techniques of
verification and analysis of software properties.

REFERENCES

1. Maraia, V., The Build Master: Microsoft’s Software Con�
figuration Management Best Practices, Addison�Wesley
Professional, 2005.

2. Robles, G., Debian Counting. http://libresoft.dat.
escet.urjc.es/debian�counting/.

3. McConnell, S., Code Complete, Microsoft Press, 2004.

4. Kulyamin, V.V., Software Verification Methods, Vse�
rossiiskii konkurs obzorno�analiticheskikh statei po pri�
oritetnomu napravleniyu “Informatsionno�telekomuni�
katsionnye sistemy” (All�Russian Competition of Ana�
lytic Survey Papers on Priority Direction “Information�
Telecomunication System”) 2008. http://window.edu.
ru/window/library?p_rid=56168.

5. Detlefs, D.L., Leino, K.R.M., Nelson, G., and Saxe J.B.,
Extended Static Checking, Tech. Report SRC�RR�159,
Digital Equipment Corporation, Systems Research
Center, 1998.

6. Flanagan, C., Leino, K.R.M., Lillibridge, M.,
Nelson, G., Saxe, J.B., and Stata, R., Extended Static
Checking for Java, Proc. of ACM SIGPLAN 2002 Conf.
on Programming Language Design and Implementation,
2002, pp. 234–245.

7. Cok, D.R. and Kiniry, J.R., ESC/Java2: Uniting
ESC/Java and JML, Lecture Notes in Computer Science
(Proc. of Int. Workshop on the Construction and Anal�
ysis of Safe, Secure, and Interoperable Smart Devices
(CASSIS'04)), Springer, 2005, vol. 3362, pp. 108–128.

8. Barnett, M., Chang, B.�Y.E., DeLine, R., Jacobs, B.,
and Leino, K.R.M., Boogie: A Modular Reusable Ver�
ifier for Object�Oriented Programs, Lecture Notes in
Computer Science (Proc. of Formal Methods for Com�
ponents and Objects), 2005, vol. 4111, Springer, 2006,
pp. 364–387.

9. Xie, Y. and Aiken, A., Saturn: A Scalable Framework
for Error Detection Using Boolean Satisfiability, ACM
Transactions Programming Languages Systems (Proc. of
Principles of Programming Languages (POPL 2005)),
ACM, 2007, vol. 29, no. 3.

10. Babic, D. and Hu, A.J., Calysto: Scalable and Precise
Extended Static Checking, Proc. of the 30th Int. Conf.
on Software Engineering, 2008, pp. 211–220.

11. Ball, T. and Rajamani, S.K., Automatically Validating
Temporal Safety Properties of Interfaces, Lecture Notes
in Computer Science (Proc. of Model Checking of Soft�
ware), Springer, 2001, vol. 2057, pp. 103–122.

12. Miné, A., The Octagon Abstract Domain, Higher�
Order Symbolic Computation, 2006, vol. 19, no. 1,
pp. 31–100.

13. Clarke, E., Grumberg, O., Jha, S., Lu, Y., and
Veith, H., Counterexample�Guided Abstraction Refine�
ment, Lecture Notes in Computer Science (Proc. of CAV
2000), Springer, 2000, vol. 1855, pp. 154–169.

14. Emanuelsson, P. and Nilsson, U., A Comparative
Study of Industrial Static Analysis Tools, Tech. Report
2008:3, Linkoping University, 2008. http://www.ep.
liu.se/ea/trcis/2008/003/trcis08003.pdf.

15. http://www.mathworks.com/products/polyspace/index.
html.

16. Blanchet, B., Cousot, P., Cousot, R., Feret, J.,
Mauborgne, L., Mine, A., Monniaux, D., and Rival, X.,
Design and Implementation of a Special�purpose
Static Program Analyzer for Safety�critical Real�time
Embedded Software The Essence of Computation: Com�
plexity, Analysis, Transformation. Essays Dedicated to
Neil D. Jones, Schmidt, D.A. and Sudborough, I.H.,
Eds., Lecture Notes in Computer Science, Springer,
2002, vol. 2566, pp. 85–108.

17. Souyris, J. and Delmas, D., Experimental Assessment
of ASTRÉE on Safety�Critical Avionics Software, Lec�
ture Notes in Computer Science (Proc. of Int. Conf. on
Computer Safety, Reliability, and Security, SAFE�
COMP 2007), Saglietti, F. and Oster, N., Eds., Nurem�
berg, Germany, Springer, 2007, vol. 4680, pp. 479–490.

18. Henzinger, T.A., Jhala, R., Majumdar, R., and Sutre, G.,
Software Verification with Blast, Lecture Notes in Com�
puter Science (Proc. of the 10�th SPIN Workshop on
Model Checking Software (SPIN 2003)), Springer,
2003, vol. 2648, pp. 235–239.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 4 2009

INTEGRATION OF VERIFICATION METHODS 221

19. Chaki, S., Clarke, E., Groce, A., Jha, S., and Veith, H.,
Modular Verification of Software Components in C,
IEEE Trans. Software Engineering, 2004, vol. 30, no. 6,
pp. 388–402.

20. Godefroid, P., Klarlund, N., and Sen, K., DART:
Directed Automated Random Testing, Proc. of 2005
ACM SIGPLAN Conf. on Programming Language Design
and Implementation, ACM, 2005, pp. 213–223.

21. Godefroid, P., Compositional Dynamic Test Genera�
tion, Proc. of the 34�th Annual ACM SIGPLAN�SIGACT
Symp. on Principles of Programming Languages (PLOP
2007), 2007, pp. 47–54.

22. Sen, K., Agha, G., CUTE and jCUTE: Concolic Unit
Testing and Explicit Path Model�checking Tools, Proc.
of Comput. Aided Verification, 2006, pp. 419–423.

23. Smaragdakis, Y. and Csallner, C., Check ‘n’ Crash:
Combining Static Checking and Testing, Proc. of the
27�th ACM/IEEE Int. Conf. on Software Engineering
(ICSE), 2005, pp. 422–431.

24. Smaragdakis, Y. and Csallner, C., Combining Static
and Dynamic Reasoning for Bug Detection, Lecture
Notes in Computer Science (Proc. of TAP 2007),
Springer, 2007, vol. 4454, pp. 1–16.

25. Xie, T., Marinov, D., Schulte, W., and Notkin, D.,
Symstra: A Framework for Generating Object�Ori�
ented Unit Tests using Symbolic Execution, Proc. of the
11th Int. Conf. on Tools and Algorithms for the Construc�
tion and Analysis of Systems (TACAS 2005), Edinburgh,
2005, pp. 365–381.

26. Tillmann, N. and Schulte, W., Parameterized Unit
Tests with Unit Meister, ACM SIGSOFT Software Engi�
neering Notes, 2005, vol. 30, no. 5, pp. 241–244.

27. Tillmann, N. and de Halleux, J., Pex—White Box Test
Generation for .NET, Lecture Notes in Computer Sci�
ence (Proc. of TAP 2008), Springer, 2008, vol. 4966,
pp. 134–153.

28. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L.,
and Engler, D.R., EXE: Automatically Generating
Inputs of Death, Proc. of the 13th ACM Conf. on Comput.
and Communications Security, Alexandria, Virginia,
USA, 2006, pp. 322–335.

29. Pacheco, C., Lahiri, S.K., Ernst, M.D., and Ball, T.,
Feedback�Directed Random Test Generation, Proc. of
Int. Conf. on Software Engineering, 2007, pp. 75–84.

30. Model Based Testing of Reactive Systems, Lecture
Notes in Computer Science, Broy, M., Jonsson, B.,
Katoen, J.�P., Leucker, M., and Pretschner, A., Eds.,
Springer, 2005, vol. 3472.

31. Utting, M. and Legeard, B., Practical Model�Based
Testing: A Tools Approach, Morgan�Kaufmann, 2007.

32. Jacky, J., Veanes, M., Campbell, C., and Schulte, W.,
Model�Based Software Testing and Analysis with C#,
Cambridge University, 2007.

33. Kulyamin, V.V., Petrenko, A.K., Kosachev, A.S., and
Burdonov, I.B., The UniTesk Approach to Designing
Test Suites, Programmirovanie, 2003, no. 6, pp. 25–43
[Programming Comput. Software (Engl. Transl.), 2003,
vol. 29, no. 6, pp. 310–323].

34. Hartman, A., Model Based Test Generation Tools,
AGEDIS Project, 2002. http://www.agedis.de/docu�
ments/ModelBasedTestGenerationTools.pdf.

35. Korel, B., Automated Test Data Generation, IEEE
Trans. Software Engineering, 1990, vol. 16, no. 8,
pp. 870–879.

36. DeMillo, R. and Offutt, A., Constraint�based Auto�
matic Test Data Generation, IEEE Trans. Software
Engineering, 1991, vol. 17, no. 9, pp. 900–910.

37. Gotlieb, A., Botella, B., and Rueher, M., Automatic
Test Data Generation Using Constraint Solving Tech�
niques, ACM SIGSOFT Software Engineering Notes,
1998, vol. 23, no. 2, pp. 53–62.

38. Gargantini, A. and Heitmeyer, C., Using Model
Checking to Generate Tests from Requirements Speci�
fications, Proc. of the Joint 7th European Software Engi�
neering Conf. and the 7�th ACM SIGSOFT Int. Symp. on
Foundations of Software Engineering (ESEC/FSE99),
ACM, 1999, pp. 146–162.

39. Hong, H.S., Lee, I., Sokolsky, O., and Cha, S.D.,
Automatic Test Generation from Statecharts Using
Model Checking, Tech. Report MS�CIS�01�07, 2001.

40. Hamon, G., de Moura, L., and Rushby, J., Generating
Efficient Test Sets with a Model Checker, Proc. of the
2nd Software Engineering and Formal Methods Int.
Conf., 2004, pp. 261–270.

41. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R.,
and Majumdar, R., Generating Tests from Counterex�
amples, Proc. of the 26th Int. Conf. on Software Engi�
neering (ICSE), 2004, pp. 326–335.

42. Lee, I., Kannan, S., Kim, M., Sokolsky, O., and
Viswanathan, M., Runtime Assurance Based On For�
mal Specifications, Proc. of Int. Conf. on Parallel and
Distributed Processing Techniques and Applications
PDPTA'1999, 1999, pp. 279–287.

43. Cheon, Y. and Leavens, G.T., A Runtime Assertion
Checker for the Java Modeling Language (JML), Proc.
of Int. Conf. on Software Engineering Research and Prac�
tice (SERP'02), CSREA, 2002, pp. 322–328.

44. Cavalli, A., Gervy, C., and Prokopenko, S., New
Approaches for Passive Testing Using an Extended
Finite State Machine Specification, Information Soft�
ware Technology, 2003, vol. 45, no. 12, pp. 837–852.

45. Drusinsky, D., Modeling and Verification Using UML
Statecharts, Newnes, 2006.

46. Drusinsky, D., The Temporal Rover and the ATG
Rover, Lecture Notes in Computer Science (Proc. of
SPIN Workshop 2000), Springer, 2000, vol. 1885,
pp. 323–329.

47. Brat, G., Visser, W., Havelund, K., and Park, S., Java
PathFinder—Second Generation of a Java Model
Checker, Proc. of Workshop on Advances in Verification,
Chicago, 2000.

48. http://javapathfinder.sourceforge.net/.
49. Blackburn, M.R., Busser, R.D., and Nauman, A.M.,

Interface�Driven, Model�Based Test Automation,
CrossTalk, J. Defense Software Engineering, 2003.

50. Artho, C., Barringer, H., Goldberg, A., Havelund, K.,
Khurshid, S., Lowry, M., Pasareanu, C., Rosu, G.,
Sen, K., Visser, W., and Washington, R., Combining
Test Case Generation and Runtime Verification, Theo�
retical Comput. Sci., 2005, vol. 336, no. 2–3, pp. 209–
234.

51. Brat, G., Havelund, K., Park, S., and Visser, W., Model
Checking Programs, Proc. of the 15th IEEE Int. Conf.

222

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 4 2009

KULIAMIN

on Automated Software Engineering, Grenoble, France,
2000, pp. 3–11.

52. Holzmann, G.J., The SPIN Model Checker: Primer and
Reference Manual, Addison�Wesley Professional, 2003.

53. http://spinroot.com/.

54. Blackburn, M., Busser, R.D., and Fontaine, J.S., Auto�
matic Generation of Test Vectors for SCR�style Speci�
fications, Proc. of the 12th Annual Conf. on Comput.
Assurance, 1997, pp. 54–67.

55. http://www.t�vec.com/.

56. http://www.microsoft.com/whdc/devtools/tools/SDV.
mspx.

57. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichten�
berg, J., McGarvey, C., Ondrusek, B., Rajamani, S.K.,
and Ustuner, A., Thorough Static Analysis of Device
Drivers, ACM SIGOPS Operating Systems Review, 2006,
vol. 40, no. 4, pp. 73�85.

58. Grieskamp, W., Kicillof, N., MacDonald, D.,
Nandan, A., Stobie, K., and Wurden, F.L., Model�
Based Quality Assurance of Windows Protocol Docu�
mentation, Proc. of the 1st Int. Conf. on Software Testing,
Verification, and Validation, ICST 2008, Lillehammer,
Norway, 2008, pp. 502–506.

59. Veanes, M., Campbell, C., Grieskamp, W., Schulte, W.,
Tillmann, N., and Nachmanson, L., Model�Based
Testing of Object�Oriented Reactive Systems with Spec
Explorer. Formal Methods and Testing, Lecture Notes
in Computer Science, Springer, 2008, vol. 4949, pp. 39–
76.

60. http://research.microsoft.com/en�us/projects/specexpl�
orer/.

61. http://research.microsoft.com/en�us/um/redmond/gr�
oups/rise/.

62. Bourdonov, I., Kossatchev, A., Petrenko, A., and
Galter, D., KVEST: Automated Generation of Test
Suites from Formal Specifications, Lecture Notes in
Computer Science (Proc. of FM'99, Toulouse, France),
Springer, 1999, vol. 1708, pp. 608–621.

63. Kuliamin, V., Petrenko, A., and Pakoulin, N., Practical
Approach to Specification and Conformance Testing of
Distributed Network Applications, Service Availability,
Malek, M., Nett, E., Suri, N., Eds., Lecture Notes in
Computer Science, Springer, 2005, vol. 3694, pp. 68–
83.

64. Grinevich, A., Khoroshilov, A., Kuliamin, V., Mark�
ovtsev, D., Petrenko, A., and Rubanov, V., Formal
Methods in Industrial Software Standards Enforce�
ment, Lecture Notes in Computer Science (Proc. of
PSI'2006, Novosibirsk, Russia, 2006), Springer, 2006,
vol. 4378, pp. 459–469.

65. Zelenov, S.V., Zelenova, S.A., Kosachev, A.S., and
Petrenko, A.K., Test Generation for Compilers and
Other Formal Text Processors, Programmirovanie,
2003, no. 2, pp. 59–69 [Programming Comput. Software
(Engl. Transl.), 2003, vol. 29, no. 2, pp. 104–112].

66. Manolios, P., Subramanian, G., and Vroon, D., Auto�
mating Component�based System Assembly, Proc. of
ISSTA 2007, London, UK, 2007, pp. 61–72.

67. Poll, E., van den Berg, J., and Jacobs, B., Specification
of the JavaCard API in JML, Proc. of CARDIS’00, Klu�
wer Academic, 2000.

68. Bouquet, F. and Legeard, B., Reification of Executable
Test Scripts in Formal Specification�based Test Gener�
ation: The Java Card Transaction Mechanism Case
Study, Proc. of the Int. Symp. of Formal Methods Europe,
Springer, 2003, pp. 778–795.

69. Bradley, A.R., Sipma, H.B., Solter, S., and Manna, Z.,
Integrating Tools for Practical Software Analysis, Proc.
of 2004 CUE Workshop, Vienna, Austria, 2004.

70. Gilb, T. and Graham, D., Software Inspection, Addi�
son�Wesley, 1993.

71. Porter, A., Siy, H., and Votta, L., A Review of Software
Inspections, Tech. Report CS�TR�3552, University of
Maryland at College Park, 1995.

72. Laitenberger, O., A Survey of Software Inspection
Technologies, Handbook on Software Engineering and
Knowledge Engineering, World Sci., 2002, vol. 2,
pp. 517–555.

73. Demakov, A.V., Object�Oriented Description of Graph
Data Structures, Programmirovanie, 2007, no. 5,
pp. 261–271 [Programming Comput. Software (Engl.
Transl.), 2007, vol. 33, no. 5, pp. 261–272].

74. Gomanyuk, S.V., An Approach to Creating Develop�
ment Environments for a Wide Class of Programming
Languages, Programmirovanie, 2008, no. 4, pp. 225–
236 [Programming Comput. Software (Engl. Transl.),
2008, vol. 34, no. 4, pp. 225–236].

75. GNU Compiler Collection Internals, http://gcc.gnu.
org/onlinedocs/gccint/index.html.

76. Daum, B., Professional Eclipse 3 for Java Developers,
Wrox, 2004.

77. http://www.eclipse.org/.

78. Yorsh, G., Ball, T., and Sagiv, M., Testing, Abstraction,
Theorem Proving: Better Together! Proc. of ISSTA
2006, Partland, Maine, USA, 2006, pp. 145–156.

79. Beust, C. and Suleiman, H., Next Generation Java Test�
ing: TestNG and Advanced Concepts, Addison�Wesley
Professional, 2007.

80. http://testng.org/doc/.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

