
Component-based Framework 
for Model Based Testing

Victor Kuliamin

Institute for System Programming

Moscow, Russia



Disclaimer and Outline

Work in progress

• Motivation – integration problems

• Existing approaches

• Proposed solution

• Some examples

2/29



Motivation

• A lot of promising model based testing (MBT) 
techniques emerge every year
– They need to be evaluated in various contexts

– They can be combined in different ways

– To integrate them all in one tool is very expensive

– Most of them are not useful in each separate project

– They also need integration in development process

Need for a component MBT frameworks, which 
allow rapid integration of emerging techniques in 
chosen combinations

3/29



Additional Observations 

• Various other development tools (analyzers, 
debuggers, monitors, etc.) also evolve quickly

– It is advantageous to use them along with MBT

– MBT based on their own languages or non-
standard extensions (not supported by standard 
tools for base language) are hard to maintain

Library- and standard extensions-based 
solutions are preferable

4/29



Perspective Approaches I

Generic unit testing tools (xUnit, JUnit descendants)
 Lightweight, “stealth” frameworks
 Configurable
 Easy to integrate with other tools and components
• TestNG [2003]

http://www.testng.org
– Use of annotations instead of naming conventions
– Expected exceptions and timeouts before checks
– Elaborated hierarchy of test components, test groups
– Setup and tear-down methods for each kind of groups
– Dependencies of test methods and groups
– Test data as test method arguments, test object factories
– External configuration in XML files

5/29



Perspective Approaches II

MBT tools of the same style
• ModelJUnit [2004]

http://czt.sourceforge.net/modeljunit/index.html
JUnit + EFSM-based MBT engine
– Test class considered as EFSM
– Test methods are possible actions
– State is calculated by special method
– Guardians (also methods) can be set for actions

• NModel [2007]
http://nmodel.codeplex.com/
– EFSM-based engine, attributes instead of special names
– Test data as test method arguments
– Composition of models
– Support for model analysis

6/29



Additional Features I

• Other modeling techniques than EFSMs

– Interface contracts and assertions

• Behavior driven development [2003]

7/29

specify { robot.moveForward() }.Must.Not.Throw();

Specify.That( max(x, y) ). 
Must.Be.Not.LessThan(x).And.Must.Be.Not.LessThan(y).
And.Must.Either.Be(x).Or.Be(y);



Additional Features II

• Other modeling techniques than EFSMs
– Interface contracts and assertions

• Behavior driven development [2003]

• CodeContracts [2009]
http://research.microsoft.com/en-us/projects/contracts/

• Auxiliary components for unit testing
– httpUnit, dbUnit, etc.

– Mocks and spies

– Test data generators

• Model-based test coverage measurement

8/29



Core Architecture Ideas

• Use of annotations and libraries
to implement MBT concepts
– Easy integration with a lot of development tools 

• Dependency injection
– Easy configurability and extensibility

– Non-invasive integration of various components

• Aspect-based configuration
– Non-invasive monitoring of system under test and event 

processing  

9/29



Dependency Injection

10/29

Framework

C1 C2 C3

Centralized Integration

Framework

C1 C2 C3

Integration based on 
Dependency Injection

C1, 
C2, 
C3



Architecture Scheme

11/29

Dependency 
injection engine

Aspect bindings

EFSM MBT engine

Contract library

Data generation 
library

Coverage 
measurement engine

Coverage 
models

Aspect weaving 
engine

Configuration

Test Models

SUT

Contracts

Test Models

Contracts

Contract checking 
engine

Adapters

External 
components 
(mocks, etc.)

Coverage 
models

Adapters



Prototype Implementation

• Base language – Java

– Reflection

– Annotations

– Plentitude of tools

– A lot of auxiliary libraries for unit testing

• Dependency injection and aspect engine –
Spring framework [www.springsource.org]

– Long usage and evolution history

12/29



Example

Bank account
• Single operation transfer(int sum)

– sum > 0 : deposit
– sum < 0 : withdraw

• Stores current balance (int, overflow prohibited)
• Credit is possible (maxCredit bounds possible withdrawals)
• All transfers are monitored and can be banned by external validity checker
• All transfers and their results are logged for audit
Test system
• EFSM with state (balance, transferAllowed)
• Test methods for transfer, and 

switching on/off transfer allowance in validity checker stub
• Contract for transfer method
• Multi-aspect coverage model
• Spy on logging 

Stub and spy library – Mockito [http://code.google.com/p/mockito/]

13/29



Account Example Class Diagram

14/29

Account

AccountImpl
AuditLog

Permitter

SUT

AccountTest

Transfer validity checker

Operation logger

$Permitter

Auto-created by Mockito
Control stub

EFSM test model

AccountSpy$AuditLog

Auto-created by Mockito
Observation stub

Contract of logging aspect

AccountContract

AccountCoverage

Contract of main functionality

Coverage model



Stateful contracts

• Both contracts support their own copy of SUT 
state (values of balance and maxCredit) 

• To synchronize it with the SUT state they need 
update methods

public void transferUpdate(int sum)

{

if(balance + sum > maxCredit

&& checkedObject.getPermitter()

.isPermittedTransfer(checkedObject, sum))

balance += sum;

}

15/29



Contract of Main Functionality

public boolean transferPost(int sum)

{

// Validity check result

boolean permission = checkedObject.getPermitter()

.isPermittedTransfer(checkedObject, sum);

if(Contract.oldBooleanValue(balance + sum > maxCredit) && permission)

// The transfer is correct and possible

return    Contract.assertEquals(Contract.intResult(), sum

, "Result should be equal to the argument")

&& Contract.assertEquals(balance, Contract.oldIntValue(balance) + sum

, "Balance should be increased by the argument")

&& Contract.assertEquals(maxCredit, Contract.oldIntValue(maxCredit)

, "Max credit should not change");

else

// The transfer is impossible

return    Contract.assertEquals(Contract.intResult(), 0

, "Result should be 0")

&& Contract.assertEquals(balance, Contract.oldIntValue(balance)

, "Balance should not change")

&& Contract.assertEqualsInt(maxCredit, Contract.oldIntValue(maxCredit)

, "Max credit should not change");

}

16/29



Contract of Logging Aspect

public void transferLogSpy(int sum)

{

// Validity check result

boolean permission = checkedObject.getPermitter()

.isPermittedTransfer(checkedObject, sum);

// Whether the transfer possible at all

boolean possible = (balance + sum > maxCredit) && permission; 

// Calls to spy are verified in order-independent way

if(possible)

{

Mockito.verify(logSpy).logKind("SUCCESS");

Mockito.verify(logSpy).logNewBalance(balance);

}

else if(!permission)

Mockito.verify(logSpy).logKind("BANNED");

else

Mockito.verify(logSpy).logKind("IMPROPER");

Mockito.verify(logSpy).logOldBalance(oldBalance);

Mockito.verify(logSpy).logSum(sum);

}

17/29



Coverage Model

public void transferCoverage(int sum)

{

// Validity check result

boolean permission = checkedObject.getPermitter()

.isPermittedTransfer(checkedObject, sum);

if(balance + sum > maxCredit) Coverage.addDescriptor("Possible transfer");

else Coverage.addDescriptor("Too big sum");

if(permission)   Coverage.addDescriptor("Permitted");

else Coverage.addDescriptor("Not permitted");

if(balance == 0) Coverage.addDescriptor("Zero balance");

else if(balance > 0) Coverage.addDescriptor("Positive balance");

else Coverage.addDescriptor("Negative balance");

if(sum == 0) Coverage.addDescriptor("Zero sum");

else if(sum > 0) Coverage.addDescriptor("Positive sum");

else Coverage.addDescriptor("Negative sum");

}

18/29



Test Model : State and Control Stub

@Test public class AccountTest

{

Account account;

@Mock Permitter permitterStub;

boolean permission = true;

// Init stubs and configure permitterStub to return true on call to isPermittedTransfer() 

public AccountTest() {

MockitoAnnotations.initMocks(this);

Mockito.when(permitterStub.isPermittedTransfer(Mockito.<Account>any(), Mockito.anyInt()))

.thenReturn(permission);

}

public void setAccount(Account account) {

this.account = account;

account.setPermitter(permitterStub);

}

// Current permission and balance are two components of the test state

@State 

public boolean getPermission() { return permission; }

@State

public int getBalance() { return account.getBalance(); }

...

}

19/29



Test Model : Actions

@Test public class AccountTest

{

...

@Test(dependsOnMethods="testWithdraw")

@DataProvider(name = "sumArray")

@Guard(name = "bound")

public void testDeposit(int x)   { account.transfer(x);  }

@Test(dependsOnMethods="switchPermission")

@DataProvider(name = "sumArray")

public void testWithdraw(int x)  { account.transfer(-x); }

// Switch permission and configure permitterStub to its value true on call to isPermittedTransfer() 

@Test

public void switchPermission()

{

permission = !permission;

Mockito.when(permitterStub.isPermittedTransfer(Mockito.<Account>any(), Mockito.anyInt()))

.thenReturn(permission);

}

// Guardian for deposits to bound the possible balance values 

public boolean bound() { return getBalance() < 5 || !permission; }

// Source of test data for both transfer test methods  

public int[] sumArray = new int[]{0, 1, 2, 3, 4};

}

20/29



21/29



More Realistic Example

• DOM API in Java

– SUT – Xerces for Java [xerces.apache.org]

• Node children manipulation

– appendChild(Node n)

– removeChild(Node n)

22/29



23/29

N1 N2

N3

N4

E1 E2

E4 E5

E6

E7 E8

E9 E10

E3

DOM Standard Requirements



24/29



25/29



26/29



27/29

Document

DocumentTypeElement Comment Comment



Conclusion

• There is a lot of features to implement yet

• But many are implemented with low effort

• (Almost) All external tools and libraries are 
open source (exception – clover is taken for its 
good integration in Eclipse)

• Dependency injection and aspects 
allow non-invasive composition of models

28/29



Thank you!
Questions?

29/29

Victor Kuliamin kuliamin@ispras.ru
www.ispras.ru/~kuliamin

Institute for System Programming,
Software Engineering Department www.unitesk.com

petrenko@ispras.ru

mailto:kuliamin@ispras.ru
http://www.ispras.ru/~kuliamin
http://www.unitesk.com/
http://www.unitesk.com/

