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Disclaimer and Outline

Work in progress

• Motivation – integration problems

• Existing approaches

• Proposed solution

• Some examples
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Motivation

• A lot of promising model based testing (MBT) 
techniques emerge every year
– They need to be evaluated in various contexts

– They can be combined in different ways

– To integrate them all in one tool is very expensive

– Most of them are not useful in each separate project

– They also need integration in development process

Need for a component MBT frameworks, which 
allow rapid integration of emerging techniques in 
chosen combinations
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Additional Observations 

• Various other development tools (analyzers, 
debuggers, monitors, etc.) also evolve quickly

– It is advantageous to use them along with MBT

– MBT based on their own languages or non-
standard extensions (not supported by standard 
tools for base language) are hard to maintain

Library- and standard extensions-based 
solutions are preferable
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Perspective Approaches I

Generic unit testing tools (xUnit, JUnit descendants)
 Lightweight, “stealth” frameworks
 Configurable
 Easy to integrate with other tools and components
• TestNG [2003]

http://www.testng.org
– Use of annotations instead of naming conventions
– Expected exceptions and timeouts before checks
– Elaborated hierarchy of test components, test groups
– Setup and tear-down methods for each kind of groups
– Dependencies of test methods and groups
– Test data as test method arguments, test object factories
– External configuration in XML files
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Perspective Approaches II

MBT tools of the same style
• ModelJUnit [2004]

http://czt.sourceforge.net/modeljunit/index.html
JUnit + EFSM-based MBT engine
– Test class considered as EFSM
– Test methods are possible actions
– State is calculated by special method
– Guardians (also methods) can be set for actions

• NModel [2007]
http://nmodel.codeplex.com/
– EFSM-based engine, attributes instead of special names
– Test data as test method arguments
– Composition of models
– Support for model analysis
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Additional Features I

• Other modeling techniques than EFSMs

– Interface contracts and assertions

• Behavior driven development [2003]
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specify { robot.moveForward() }.Must.Not.Throw();

Specify.That( max(x, y) ). 
Must.Be.Not.LessThan(x).And.Must.Be.Not.LessThan(y).
And.Must.Either.Be(x).Or.Be(y);



Additional Features II

• Other modeling techniques than EFSMs
– Interface contracts and assertions

• Behavior driven development [2003]

• CodeContracts [2009]
http://research.microsoft.com/en-us/projects/contracts/

• Auxiliary components for unit testing
– httpUnit, dbUnit, etc.

– Mocks and spies

– Test data generators

• Model-based test coverage measurement
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Core Architecture Ideas

• Use of annotations and libraries
to implement MBT concepts
– Easy integration with a lot of development tools 

• Dependency injection
– Easy configurability and extensibility

– Non-invasive integration of various components

• Aspect-based configuration
– Non-invasive monitoring of system under test and event 

processing  
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Dependency Injection
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Architecture Scheme
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Prototype Implementation

• Base language – Java

– Reflection

– Annotations

– Plentitude of tools

– A lot of auxiliary libraries for unit testing

• Dependency injection and aspect engine –
Spring framework [www.springsource.org]

– Long usage and evolution history
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Example

Bank account
• Single operation transfer(int sum)

– sum > 0 : deposit
– sum < 0 : withdraw

• Stores current balance (int, overflow prohibited)
• Credit is possible (maxCredit bounds possible withdrawals)
• All transfers are monitored and can be banned by external validity checker
• All transfers and their results are logged for audit
Test system
• EFSM with state (balance, transferAllowed)
• Test methods for transfer, and 

switching on/off transfer allowance in validity checker stub
• Contract for transfer method
• Multi-aspect coverage model
• Spy on logging 

Stub and spy library – Mockito [http://code.google.com/p/mockito/]
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Account Example Class Diagram
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Stateful contracts

• Both contracts support their own copy of SUT 
state (values of balance and maxCredit) 

• To synchronize it with the SUT state they need 
update methods

public void transferUpdate(int sum)

{

if(balance + sum > maxCredit

&& checkedObject.getPermitter()

.isPermittedTransfer(checkedObject, sum))

balance += sum;

}
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Contract of Main Functionality

public boolean transferPost(int sum)

{

// Validity check result

boolean permission = checkedObject.getPermitter()

.isPermittedTransfer(checkedObject, sum);

if(Contract.oldBooleanValue(balance + sum > maxCredit) && permission)

// The transfer is correct and possible

return    Contract.assertEquals(Contract.intResult(), sum

, "Result should be equal to the argument")

&& Contract.assertEquals(balance, Contract.oldIntValue(balance) + sum

, "Balance should be increased by the argument")

&& Contract.assertEquals(maxCredit, Contract.oldIntValue(maxCredit)

, "Max credit should not change");

else

// The transfer is impossible

return    Contract.assertEquals(Contract.intResult(), 0

, "Result should be 0")

&& Contract.assertEquals(balance, Contract.oldIntValue(balance)

, "Balance should not change")

&& Contract.assertEqualsInt(maxCredit, Contract.oldIntValue(maxCredit)

, "Max credit should not change");

}
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Contract of Logging Aspect

public void transferLogSpy(int sum)

{

// Validity check result

boolean permission = checkedObject.getPermitter()

.isPermittedTransfer(checkedObject, sum);

// Whether the transfer possible at all

boolean possible = (balance + sum > maxCredit) && permission; 

// Calls to spy are verified in order-independent way

if(possible)

{

Mockito.verify(logSpy).logKind("SUCCESS");

Mockito.verify(logSpy).logNewBalance(balance);

}

else if(!permission)

Mockito.verify(logSpy).logKind("BANNED");

else

Mockito.verify(logSpy).logKind("IMPROPER");

Mockito.verify(logSpy).logOldBalance(oldBalance);

Mockito.verify(logSpy).logSum(sum);

}
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Coverage Model

public void transferCoverage(int sum)

{

// Validity check result

boolean permission = checkedObject.getPermitter()

.isPermittedTransfer(checkedObject, sum);

if(balance + sum > maxCredit) Coverage.addDescriptor("Possible transfer");

else Coverage.addDescriptor("Too big sum");

if(permission)   Coverage.addDescriptor("Permitted");

else Coverage.addDescriptor("Not permitted");

if(balance == 0) Coverage.addDescriptor("Zero balance");

else if(balance > 0) Coverage.addDescriptor("Positive balance");

else Coverage.addDescriptor("Negative balance");

if(sum == 0) Coverage.addDescriptor("Zero sum");

else if(sum > 0) Coverage.addDescriptor("Positive sum");

else Coverage.addDescriptor("Negative sum");

}
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Test Model : State and Control Stub

@Test public class AccountTest

{

Account account;

@Mock Permitter permitterStub;

boolean permission = true;

// Init stubs and configure permitterStub to return true on call to isPermittedTransfer() 

public AccountTest() {

MockitoAnnotations.initMocks(this);

Mockito.when(permitterStub.isPermittedTransfer(Mockito.<Account>any(), Mockito.anyInt()))

.thenReturn(permission);

}

public void setAccount(Account account) {

this.account = account;

account.setPermitter(permitterStub);

}

// Current permission and balance are two components of the test state

@State 

public boolean getPermission() { return permission; }

@State

public int getBalance() { return account.getBalance(); }

...

}
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Test Model : Actions

@Test public class AccountTest

{

...

@Test(dependsOnMethods="testWithdraw")

@DataProvider(name = "sumArray")

@Guard(name = "bound")

public void testDeposit(int x)   { account.transfer(x);  }

@Test(dependsOnMethods="switchPermission")

@DataProvider(name = "sumArray")

public void testWithdraw(int x)  { account.transfer(-x); }

// Switch permission and configure permitterStub to its value true on call to isPermittedTransfer() 

@Test

public void switchPermission()

{

permission = !permission;

Mockito.when(permitterStub.isPermittedTransfer(Mockito.<Account>any(), Mockito.anyInt()))

.thenReturn(permission);

}

// Guardian for deposits to bound the possible balance values 

public boolean bound() { return getBalance() < 5 || !permission; }

// Source of test data for both transfer test methods  

public int[] sumArray = new int[]{0, 1, 2, 3, 4};

}
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More Realistic Example

• DOM API in Java

– SUT – Xerces for Java [xerces.apache.org]

• Node children manipulation

– appendChild(Node n)

– removeChild(Node n)
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Conclusion

• There is a lot of features to implement yet

• But many are implemented with low effort

• (Almost) All external tools and libraries are 
open source (exception – clover is taken for its 
good integration in Eclipse)

• Dependency injection and aspects 
allow non-invasive composition of models
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Thank you!
Questions?
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