
ISSN 0361-7688, Programming and Computer Software, 2007, Vol. 33, No. 3, pp. 154–173. © Pleiades Publishing, Ltd., 2007.
Original Russian Text © V.V. Kuliamin, 2007, published in Programmirovanie, 2007, Vol. 33, No. 3.

154

1. INTRODUCTION

One of the fields of human activities based on the
use of complex software is mathematical modeling of
complex phenomena. For example, it can be modeling
of the evolution of the universe as a whole, of galaxies
and stars, of physical processes under extreme condi-
tions, of biochemical, climate, and social processes. In
many cases, computer simulation provides important
information about such phenomena; however, it is dif-
ficult to obtain an independent assessment of the valid-
ity of the simulation results, which could make it possi-
ble to verify the validity of the software. This fact
causes considerable difficulties in the development of
reliable systems for mathematical modeling.

The reliability of such systems can be improved
using a formal validation of library components and, in
particular, of implementations of mathematical func-
tions included in those libraries. The confidence in the
components underlying such systems improves the
quality of the development and makes it possible to
focus on detecting and correcting errors in other com-
ponents of the software.

Many practical problems concern continuous sys-
tems in which the space of states is a real or complex
variety. The points of such a variety (the states of the
system) can be represented in a certain system of coor-
dinates as sets of real numbers; then, the evolution of
the system is described by curves in the variety. The use
of computers for modeling such systems almost always
assumes that the continuous space of states is repre-
sented in a discrete form, which gives rise to additional
difficulties in ensuring that the software is correct.

The real numbers are most often represented by
binary floating point numbers described by the IEEE
754 [1] (also called IEC 60559 [2]) standards. This

standard was introduced in the middle of the 1980s;
earlier, there was no common portable format for com-
puter representation of real numbers. The aim of intro-
ducing such a standard was the development of portable
libraries of computational algorithms so that the same
computations performed on various platforms pro-
duced the same results. Although many hardware and
software manufactures had to considerably revise their
products, currently this standard is supported by a vast
majority of computation platforms. Gradually, we are
leaving behind the variety of architectures that existed
in the early 1980s and the strong dependence of high-
quality implementations of computational algorithms
on a particular platform.

However, the aim has not been completely achieved.
IEEE 754 regulates only the machine representation of
floating point numbers and the basic operations on
them, i.e., addition, subtraction, multiplication, divi-
sion, comparison, and type conversion. Among the
mathematical functions, only the square root is stan-
dardized. Therefore, libraries of mathematical func-
tions can be implemented that formally conform to the
standard but produce quite different results (see the
examples below), which results in nonportability and
unreliable operation of the applications that use the
functions that are not standardized in IEEE 754. As a
result, the users that need accurate computations
employ other, nonstandard, libraries. Hence, the desire
to standardize the implementations of a great number of
mathematical functions that are often used in applica-
tions. Standardization always assumes the verification
that an implementation conforms to the standard.

In this paper, we present a possible approach to the
standardization of implementations of mathematical
functions operating on floating point numbers in the

Standardization and Testing of Implementations
of Mathematical Functions in Floating Point Numbers

V. V. Kuliamin

Institute for System Programming, Russian Academy of Sciences,
ul. Bol’shaya Kommunisticheskaya 25, Moscow, 109004 Russia

e-mail: kuliamin@ispras.ru

Received October 4, 2006

Abstract

—Requirements and designing test suites for implementations of mathematical functions in floating
point arithmetic in the framework of the IEEE 754 standard are considered. A method based on this standard is
proposed for designing requirements for such functions. This method can be used for the standardization of
implementations of such functions; this kind of standardization extends IEEE 754. A method for designing test
suites for the verification of those requirements is presented. The proposed methods are based on specific prop-
erties of the representation of floating point numbers and on some features of the functions under examination.

DOI:

10.1134/S036176880703005X

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 33

No. 3

2007

STANDARDIZATION AND TESTING OF IMPLEMENTATIONS 155

IEEE 754 formats. Since the standard needs a support
in the form of test suites for verifying the conformity to
the standard, we also propose a method for designing
such test suites. This method uses formal requirements
for the behavior of mathematical functions and the fea-
tures of the structure of floating point numbers.

The majority of the ideas underlying the proposed
approach to the standardization of implementations of
mathematical functions are borrowed from various
sources—the standardization group of ISO/IEC 10967
[3–5] and the studies of the team in INRIA (France) per-
formed in the framework of the Arenaire project [6–8].
However, to the author’s knowledge, the proposed pro-
cedure for determining the requirements for implemen-
tations of mathematical functions has never been pre-
sented in a unified form. The method for designing test
suites is a novel one, although some of its elements can
be found in the literature or in implemented projects.

2. PROBLEMS IN COMPUTING MATHEMATICAL
FUNCTIONS

First, we consider the problems concerning the cor-
rect computation of mathematical functions in floating
point arithmetic.

These problems are mainly caused by the discrete
nature of the floating point representation of real num-
bers, which makes possible an efficient manipulation
on such numbers on computers but leads to the fact that
the exact results of most computations are not repre-
sentable. The format of floating point numbers and the
rules of operating on them are described in IEEE 754
[1] (IEC 60559 [2]) and IEEE 854 [9].

IEEE 754 defines the representation of binary float-
ing point numbers. IEEE 854 extends this definition to
decimal floating point numbers. In practice, binary
numbers are by far the most widely used. Hence, we
will consider only the binary numbers in this paper,
although all the reasoning also applies to the decimal
numbers.

2.1. Floating Point Numbers

Every binary floating point number has the follow-
ing structure [1, 9, 10].

• A number is represented by a collection of

n

 bits.
The first one is the

sign bit

, the next

k

 bits represent its

exponent

E

, and the remaining (

n

 –

k

 – 1) bits represent
its

significand

M

.
• The sign bit

S

, the exponent

E

, and the significand

M

 of the number

x

 determine its value by the rule

where

�

S

 is zero for positive numbers and is equal to unity
for the negative numbers.

x 1–()S 2e m,⋅ ⋅=

�

 If 0 <

E

 < 2

k

 – 1, then

e

 =

E

 – 2

(

k

 – 1)

 + 1; otherwise, if

E

 = 0, then

e

 =

E

 – 2

(

k

 – 1)

 + 2. The number

b

 = (2

(

k

 – 1)

 – 1)
is called the

exponent bias

.

�

 If 0 <

E

 < 2

k

 – 1, then

m

 = 1 +

M

/2

n

 –

k

 – 1

. In other
words, the binary representation of

m

 is 1.

M

; i.e., the
integral part of

m

 is 1, and the sequence of digits in the
fractional part coincides with the sequence of bits

M

.
If

E

 = 0, then

m

 =

M

/2

n

 –

k

 – 1

. In other words, the binary
representation of

m

 is 0.

M

. The numbers with the zero
exponent are called

denormalized

, and all the other
numbers are called

normalized

.
• The greatest possible value of the exponent

E

 = 2

k

 – 1
is reserved for representing the special quantities: the
positive and the negative infinities (+

∞

 and –

∞

) and the
special quantity

NaN

 (not a number).

NaN

 is used if the
result of an operation cannot be correctly represented
by a common number or by an infinity (for example, the
results of the operations 0/ 0 and (–

∞

) + (+

∞

)).
+

∞

 has the zero sign bit, the greatest possible expo-
nent, and the zero significand; –

∞

 differs only in the
sign bit.

Any number that has the greatest possible exponent
and a nonzero significand is considered as a representa-
tion of NaN.

• IEEE 754 and IEEE 854 define several types of
floating point numbers. Among them, the most widely
used are

single precision, double precision

, and

double-
extended precision

 numbers.
For single precision numbers,

n

 = 32 and

k

 = 8.
Respectively, the significand uses 23 bits, and the expo-
nent bias is 127.

For double precision numbers,

n

 = 64 and

k

 = 11.
The significand uses 52 bits, and the exponent bias is
1023.

For double-extended precision numbers, no specific
values of

k

 and

n

 are fixed in the standards; only the
bounds 128

≥

n

≥

 80 and

k

≥

 15 are specified. In Intel
32-bit processors,

n

 = 80 and

k

 = 15. The significand
uses 64 bits, and the exponent bias is 16383.

In addition

quadruple precision

 numbers are some-
times used for which

n

 = 128 and

k

 = 15. In this case,
the significand uses 112 bits, and the exponent bias is
16383. These numbers are not specified in the standard
but they have a similar structure.

By way of example, consider the representation of
the number –17

10

 in single and double precision. Since
–17

10

 = (–1)

1

 · 2

131–127

 · 1.0001

2

 = (–1)

1

 · 2

1027–1023

 ·
1.0001

2

, it is represented in single and in double preci-
sion as 1 1000001100010000000000000000000 and
1 10000000011000100000000000000000000000000
0000000000000000000000, respectively.

Below, we will use the hexadecimal rather than the
binary notation.

Some extreme values for floating point numbers in
various formats are shown in Table 1. For the double-
extended precision, the parameters of the 32-bit Intel
architecture are used.

156

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 33

No. 3

2007

KULIAMIN

The real numbers that can be represented by a float-
ing point number will be called

representable

 (if it is
clear from the context which precision is assumed or if
the precision is of no importance). It is clear that not
every real number is representable. For example,

π

is
irrational while all the representable numbers are ratio-
nal; more precisely, all the representable numbers are
binary rational; i.e., they have the form

p

/2

m

, where

p

and

m

 are integers and

m is nonnegative. Thus, 1/3 is
not representable because it is not binary rational.

The numbers 210000000 and 2–10000000 are not repre-
sentable although they are binary rational: the first one
is too big and the second one is too small in absolute
value even for quadruple precision. To represent these
numbers, an exponent of at least 25 bits long is
required. The numbers that are too close to represent-
able ones are not representable as well. For example, to
represent 1 + 2–1000, a significand consisting of 999
zeros and a single unit is required.

Note that there is the floating point number –0,
which differs from 0. IEEE 754 requires that they be
considered equal. Moreover, no operation on floating
point numbers described in this standard can produce –
0 except for the subtraction of x from x with rounding
toward –∞ (see below) and, for some uncertain reason,
square root of –0. In all the other cases, 0 is returned as
the zero result.

It is seen that the represented numbers are distrib-
uted among the real numbers in a peculiar way.
An approximate pattern of this distribution is shown in
Fig. 1.

2.2. Difficulties in Performing Correct Computations

Not all real numbers are representable. Therefore,
most computations with floating point numbers are
approximate. However, the inaccuracy of the computa-
tion results is not the main problem. More important is
the accumulation of errors in complicated computa-
tions when a great number of small errors in intermedi-
ate computations can completely distort the final result.

Moreover, since the relative error of approximations
of real numbers by representable numbers is approxi-
mately constant, the approximation errors strongly
depend on the absolute value of the numbers involved
in the computations. Therefore, subtraction or division
of two large close quantities in the process of computa-
tions can produce a considerable error. This effect is
called catastrophic cancellation.

Let us consider some examples of large errors in
floating point computations.

Harmonic sums. The harmonic sum Hn is defined
as the sum of reciprocals of the integer numbers from 1
to n: . Such sums often appear in combinato-1/k

k 1=
n∑

Table 1. Extreme values of floating point numbers

General
form

Single
precision

Double
precision

Double-extended
precision

Quadruple
precision

The smallest denormalized positive number 2–b – n + k + 2 2–149 2–1074 2–16446 2–16494

The smallest normalized positive number 2–b + 1 2–126 2–1022 2–16382 2–16382

The greatest positive number 2b – n + k + 1 ×
× (2n – k – 1)

2104 × (224 – 1) 2971 × (253 – 1) 216319 × (265 – 1) 216721 × (2113 – 1)

The greatest number less than 1 1 – 2–n + k 1 – 2–24 1 – 2–53 1 – 2–65 1 – 2–113

The smallest number greater than 1 1 + –n + k + 1 1 + 2–23 1 + 2–52 1 + 2–64 1 + 2–112

0

The numbers with the same exponent
and different significands are equally spaced

The interval between the

The numbers with the zero significand and different exponents
denormalized numbers is equal

to the smallest among them;
smallest among them form a geometric sequence with the quotient 2 and include 0

The intervals between the normalized numbers
with adjacent exponents differ by a factor of 2

Fig.1. An approximate pattern of the distribution of floating point numbers.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 3 2007

STANDARDIZATION AND TESTING OF IMPLEMENTATIONS 157

rial problems or as elements of series for some special
functions.

If the harmonic sum is computed straightforwardly
by summing 1, 1/2, 1/3, and so on, then the terms grad-
ually diminish and become less than the difference
between the current sum and the next representable
number. Hence, beginning from a certain n (which
depends on the precision), the harmonic sum stops to
increase.

Hn thus calculated stops growing when 1/n becomes
less than the half of the last bit of the significand of the
current value of Hn. For single precision, this happens
when n = 221 = 2097152 and for double precision, when
n = 248 = 281474976710656. The corresponding har-
monic sums are Hn – 15.133306695… and
33.8482803317789…. In fact, due to accumulation of
the rounding errors, we obtain H2097152 = 15.403683 for
single precision (here, only two digits are correct).

The simplest way to improve the accuracy is to com-
pute the sum beginning with the smallest terms. Then,
H2097152 for single precision is 15.132898 (here, four
digits are correct). It is still better to use the asymptotic
series

where γ = 0.5772156649… is the Euler–Mascheroni
constant and B2k is the Bernoulli number with the index

2k. The use of only three terms of this series gives
15.1333065 for H2097152, where only the last digit is
incorrect. For H281474976710656, all the digits are correct
in this case.

The area of needle-like triangles. A triangle is said
to be needle-like if two of its sides are approximately
equal in length and both are much longer than the third
one. To compute its area given the lengths of the sides,
Heron’s formula

may be used, where a, b, and c are the lengths of the
sides and p = (a + b + c)/2 is the semiperimeter.

Let a = b = 107 and c = 1. Then, this formula yields
0.0 in single precision and 4999999.9999999935 in
double precision (here, all the digits except for the last
one are correct). The zero area in single precision is
obtained because the computed semiperimeter is exactly
equal to a and b due to the fact that its exact value
10000000.5 is not representable in single precision. This
is an example of catastrophic cancellation, which makes
the result completely senseless in this case.

To make such results impossible, the algorithm for
performing computations must be stable with respect to
errors. The formulas used in the computations must be
rearranged so as to exclude the operations that can
cause catastrophic cancellation. For the area of a trian-
gle, such an algorithm is as follows [11].

The lengths of the sides should be arranged so that
a ≥ b ≥ c. Then, the area is found by the rule

The order of the computations must be exactly as
specified by the parentheses. When this rule is used for
single precision computations in the example above,
the result is 5000000.0, which is much closer to the cor-
rect value.

Unstable sequence. In both examples considered
above, an algorithm that is stable with respect to errors
can be found. Unfortunately, such algorithms are
known not for all practically important problems.
Moreover, for some problems no such algorithm exists
because the problem itself is unstable. This situation is
characteristic of many problems in population dynam-
ics and hydrodynamics. Here, we cite an example pro-
posed Muller (see [12]). It is of no practical importance,
but clearly demonstrates the relevant effects.

Define the sequence xn as follows: x0 = 2, x1 = –4, and

It can be proved that it is convergent as n ∞, and
the limit is 6. However, floating point computations in
any precision (any number of bits can be assigned to the
significand and to the exponent) produce the sequence
xn that tends to 100. The higher the precision, the later
the computed values deviate from the correct ones, but
this always happens.

Thus, this sequence shows that sometimes computa-
tions to any fixed accuracy can produce completely
wrong results.

Incidents related to floating point computations.
In addition to purely mathematical and model effects,
an inaccurate account for errors and their accumulation
in computational algorithms can cause severe conse-
quences in real life.

One sad incident related to computational errors
occurred in 1991 during the Desert Storm operation
(see [13]). A Patriot battery failed to track and intercept
an Iraqi Scud missile, which hit an army barracks,
killed 28 Americans, and wounded about a hundred. An
investigation revealed that the cause of the failure was

Hn nln γ 1
2n
------ 1

12n2
-----------–

1

120n4
--------------+ + +=

–
1

252n6
-------------- 1

240n8
-------------- …–

B2k

2k n2k⋅
-----------------– …,–+

S p p a–() p b–() p c–()=

1

1

S
1
4
--- a b c+()+() c a b–()–() c a b–()+() a b c–()+().=

xn 2+ 111 1130
xn 1+
------------–

3000
xn 1+ xn

----------------.+=

158

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 3 2007

KULIAMIN

the accumulation of errors in time calculation in the
battery control system.

The time was calculated in tenths of seconds starting
from the beginning of the system operation, and all the
computations were performed on a 24-bit processor. By
the time of the incident, the battery had been operating
without reloading for about four days. As a result of
multiplying the original error in the representation of
1/10 of a second in binary form by a large number the
tenths of seconds elapsed from the beginning of the sys-
tem operation, a considerable error in time calculation
(about 1/3) had accumulated. Scud travels at a speed of
about 1700 m/s. Hence, an error in the time calculation
exceeding several hundredth of a second makes the
interception impossible.

One of the most expensive software errors in history,
which caused the failure of the maiden flight of Ariane
5 launcher, was also caused by inaccurate computa-
tions. More precisely, the failure was caused by the fact
that a single precision value was used to take into
account the horizontal component of the launcher’s
velocity. This was quite adequate for Ariane 4, for
which the software was initially designed. However, the
velocity of Ariane 5 was much higher, which caused an
overflow. The system tried to handle the exception by
recalculating the same value on a backup processor,
which caused another exception and an attempt to use
out-of-date data for trajectory calculations. As a result,
the launcher veered abruptly, began to wobble, and was
destroyed due to the impossibility to continue a con-
trolled flight.

2.3. Requirements of the Standards
for Implementations of Mathematical Functions

The examples considered above show that it is
important to have standards defining requirements for
the components of mathematical libraries, which
makes the software based on such libraries portable.
However, the particular content of those requirements
is also important because it can significantly affect the
accuracy of computations. Let is inspect the require-
ments of the current standards concerning implementa-
tions of mathematical functions.

IEEE 754 and IEEE 854 standards. IEEE 754
defines four round modes for representing the results of
floating point computations: rounding toward nearest,
rounding toward positive infinity, rounding toward neg-
ative infinity, and rounding toward zero. In the first
mode, the returned result is the representable number
that is the nearest to the exact result; if the exact result
is strictly in the middle between two representable
numbers, then the representable number in which the
last bit of the significand is zero must be returned. In the
second mode, the least representable number that
exceeds the exact result is returned. In the third mode,
the greatest representable number that is less than or
equal to the exact result is returned. In the fourth mode,

if the exact result is positive, then the rounding is per-
formed as in the third mode; otherwise, it is performed
as in the second mode.

When the exact result is beyond the bounds of the
representable numbers, different results are returned in
different round modes. In the round to nearest mode, if
the exact value differs from the greatest or smallest rep-
resentable number more than by half of the unit in the
last place (ulp) (see [10]), then +∞ (respectively, –∞) is
returned. In the case of overflow in the round to zero
mode, the greatest or the smallest representable number
is returned, depending on the sign of the exact result. In
the round to +∞ (to –∞) mode, +∞ (respectively, the
greatest representable number) is returned if the exact
result is positive; if it is negative, the smallest represent-
able number (respectively, –∞) is returned. In addition,
the overflow flag must be set. If the exact result is infi-
nite, then the infinity with the corresponding sign is
returned and the divide by zero flag is set.

When a nonzero result whose absolute value is less
than the minimal normalized positive number is
obtained, the underflow flag must be set. In all the
cases, when the exact result is not representable, the
inexact flag must be set. If the result of an operation
cannot be interpreted (for example, the square root of –
1, or 0/0, or (–∞) + (+∞)), NaN must be returned and the
invalid flag must be set.

However, the IEEE 754 and IEEE 854 standards
impose the requirements discussed above only for the
arithmetic operations (addition, subtraction, multipli-
cation, and division), type conversion, remainder in
integer division, and square root. The other functions
are not covered by these standards.

Standards for C libraries. The standard ISO/IEC
9899 [15] for C and the portable operating system inter-
face (POSIX) IEEE 1003.1 standard [16], which
describe the library of mathematical functions for C, do
not cover the other functions either.

The C standard refers to IEEE 754 and only places
additional requirements upon the results of certain
functions for some specific values of the arguments (for
example, exp(0) = 1 and sin(0) = 0; these requirements
are in Appendix F of the ISO C standard). POSIX also
refers to IEEE 754 and adds a description of the behav-
ior of the implementations of mathematical functions in
the case of overflow, underflow, and for the values of
the arguments for which the corresponding function is
not defined.

For example, POSIX (see [17]) requires that sin(x)
= x when x = 0, –0, and for the denormalized values of
x. In addition, the value of the sine for NaN, –∞, and +∞
must be NaN. For the denormalized arguments, the
range error flag must be set; if the argument is –∞ or
+∞, the domain error flag must be set. No other con-
straints on the implementation of the sine are imposed.

Such requirements resemble an amazing occurrence
concerning one of the first Soviet satellites. After the
successful completion of the flight, it was discovered

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 3 2007

STANDARDIZATION AND TESTING OF IMPLEMENTATIONS 159

that the routine for the sine function in the software
returned the value of 1/2 for every positive argument:
the developers failed to replace a debug version of this
routine with the release version.

The absence of clear requirements for the majority
of mathematical functions in the standards can only be
explained by the desire to give time for an accurate
implementation of the requirements formulated in
IEEE 754, which was not a simple task in the middle of
the 1980s. However, much time has elapsed since then.
The absence of standards for mathematical functions
sometimes results in severe errors in the mathematical
models implemented in software; often, such applica-
tions produce quite different results on different plat-
forms.

ISO/IEC 10967 standards. In the last 5–8 years,
proposals for the standardization of the requirements for
implementations of mathematical functions appeared [7,
8]. Many pioneers in this field work on the Arenaire
project [6] carried out in France by INRIA, CNRS, and
the Lyon Higher Normal School. As a result of their
activities, the set of ISO/IEC 10967 standards [3–5]
was issued (the third part is still under discussion),
which formulate natural and independent of program-
ming languages constraints on the implementations of
elementary functions: roots, exponential function, log-
arithms to various bases, hyperbolic and trigonometric
functions, and their inverses. These constraints concern
several aspects.

• Possible errors in the computation of functions are
expressed in terms of units in the last place (ulp) [10].
Rounding toward the nearest representable number
produces an error not greater than 0.5 ulp; i.e., the com-
puted result differs from the exact value not greater than
by a half of the unit of the last bit in the significand of
the result.

However, due to the nature of mathematical func-
tions, such an accuracy is not always justified from the
practical point of view. Any floating point number is an
approximate representation of each real number for
which it is the nearest representable number. Thus, the
value of the function arguments can have an error that
cannot be corrected by the function computation. In
ISO/IEC 10967, more practical requirements for the
accuracy of computations are formulated that restrict
the error of the result by a value from 0/5 ulp to 2 ulp
depending on the function [4].

• The ISO/IEC 10967 standards require that the
implementations of mathematical functions preserve
the sign of its exact value for the given value of the
argument. Moreover, the implementations must be
monotone on the intervals of monotonicity of the func-
tion; i.e., if a function decreases or increases on a cer-
tain interval, its implementation must decrease or,
respectively, increase on the same interval.

Exceptions to this rule are trigonometric functions
in the domain of large values of the argument for which
the lengths of the interval of the sign change and the

interval of monotonicity are comparable with the unit
in the last place of the argument.

• The ISO/IEC 10967 standards require that some
specific properties in a neighborhood of the points
where the corresponding function has known represent-
able values be fulfilled.

For example, the exponential function must return
the exact unity for the arguments that are sufficiently
close to zero.

This requirement is caused by the fact that the den-
sity of the representable numbers is much higher in the
neighborhood of 0 than in the neighborhood of 1.
Indeed, the distance to the nearest double precision rep-
resentable number is 2–53 for 1 and 2–1074 for 0.

2.4. The Table Maker’s Dilemma

The requirements for the accuracy of computations
of mathematical functions lead to the so-called table
maker’s dilemma [18–20].

The problem is that in order to correctly choose the
rounded nearest floating point number in approximate
computations, one sometimes has to compute many
extra bits of the result’s significand (actually, much
more than the floating point numbers used for the com-
putations can store).

The name of the problem originates in the times
when the tables of mathematical functions (logarithms,
exponentials, sines, and cosines) were made up manu-
ally. To perform the rounding correctly, the table maker
computed one or two significant digits more that the
resulting table was supposed to hold. However, some-
times the additional digits are insufficient. In such
cases, the table makers often chose one of two possible
results at random.

For example, suppose that we are computing the sine
for binary floating point numbers that have a significand
of six bits long. The sine of the number (the bits of the
significand are printed in bold) 11.10102 = 3.62510 is
0.011101101111110…2 = 0.063225984913…10.
An approximate computation of the six bits of the sig-
nificand can produce 0.01110112 or 0.01111002
because the exact value is very close to their arithmetic
mean. We can reliably choose the first value as the near-
est one to the exact result only if we know the 14th
exact bit.

In the round toward nearest mode, the table maker’s
dilemma appears when the value of a function is not
representable but is very close to the arithmetic mean of
two representable numbers. If the rounding is toward
zero, toward +∞, or toward –∞, this problem appears
when the exact value is not representable but is so close
to a representable number that only considerable addi-
tional computations can decide whether the exact result
exceeds this representable number or not.

Consider both cases in which the table maker’s
dilemma manifests itself in double precision computa-
tions. Computing the natural logarithm of the number

160

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 3 2007

KULIAMIN

1.613955DC802F816 · 2–35, we obtain –
17.F02F9BAF60357F149…16 (here F14 denotes that the
digit F repeats 14 times which, taking into account the
two adjacent digits, yields 60 repeating unities). This
number lies almost exactly in the middle between –
17.F02F9BAF603516 and –17.F02F9BAF603616 but is
slightly closer to the first of them.

Thus, in order to make the correct rounding in the
round mode toward nearest, the logarithm at the point
under examination must be computed with a relative
error not exceeding 2–114. A greater error does not make
it possible to determine which of the two indicated rep-
resentable number is closer to the exact value of the
logarithm.

The natural logarithm of the number
1AC.50B409C8AEE16 is 1.83D4BCDEBB3F3F15A…16 ·
22. When the logarithm at this point is computed in the
round modes toward zero, +∞ or –∞, one must find out
whether or not the exact value of the logarithm exceeds
1.83D4BCDEBB3F3F416 · 22. To this end, it must be
computed with a relative error not exceeding 2–114.

The general form of the numbers that present diffi-
culties for rounding is showed in Fig. 2.

The examples above show that, in order to obtain a
correctly rounded result, the computations must some-
times be much more accurate than can be achieved
within the floating point numbers with a fixed accuracy.

For a greater part of widespread functions, their val-
ues for general (not specific, for example, distinct from
0 and 1) binary rational arguments are irrational; there-
fore, they cannot be representable and cannot be arith-
metic means of two representable numbers. For the
exponential function, for the hyperbolic, trigonometric
functions and for their inverses, this follows from the
fact that the number e raised to a nonzero algebraic power
(even a complex one) is transcendental (see, e.g., [21]).

Since the set of representable numbers is finite,
there is an ε > 0 for every function such that the compu-
tation of this function with an error not exceeding ε
allows one to determine the correct rounded represent-
able number for each round mode. However, it is inef-
ficient to compute the function to such an accuracy for
all values of the argument. For example, for the natural
logarithm in double precision computations, ε can be
set to 2–118 for any round mode (see [20]). However,
such a high accuracy is required only for a single value
of the argument; for all other arguments, a lower accu-

racy is sufficient. For the overwhelming majority of
representable double precision numbers, the correct
rounding of the logarithm can be obtained if the compu-
tations are performed with an error not exceeding 2–54.

The table maker’s dilemma requires that the compu-
tations be performed much more accurately than is pos-
sible with standard types of floating point numbers; this
concerns both the correct implementations of mathe-
matical functions and the verification of the correctness
of those implementations. However, it would be ineffi-
cient to perform so accurate computations for all values
of the argument. Therefore, in order to improve effi-
ciency, one should know how to choose the accuracy
depending on the current value of the function argu-
ment.

3. A SURVEY OF STUDIES DEVOTED
TO TESTING IMPLEMENTATIONS
OF MATHEMATICAL FUNCTIONS

Methods for computing mathematical functions are
considered in many studies. One classical work on this
topic is [22], although it was published long ago and is
now partly obsolete. A more modern presentation of the
methods for computing elementary functions (only a
subset of the functions considered in [22]) can be found
in [23].

Studies devoted to a systematic testing of imple-
mentations of mathematical functions in floating point
numbers are scarce. On the Internet, one can find a huge
number of various computer programs for testing such
functions (see, e.g., [24]); however, the overwhelming
majority of them consider only one aspect (sometimes,
two or three) of the computations.

It was indicated in [24] (see also [25, 26]) that
although the standardization of floating point computa-
tions began over 20 years ago, many manufactures of
hardware and software still do not strictly follow those
standards. Hence, tests for the correct behavior of
implementations of mathematical functions are still
required.

Among the most systematic works on testing floating
point computations, we distinguish the following ones.

Studies devoted to testing the conformity to
IEEE 754.

• The first systematic test suite for verifying the cor-
rectness of implementations of operations on floating

For the round toward nearest mode For the round toward 0, +•, and –• modes

significand many identical
bits bits

x.xxxxxxxxxx 0 111111111 . . . 1 xxxx . . .

x.xxxxxxxxxx 1 000000000 . . . 0 xxxx . . .

significand many identical
bits bits

x.xxxxxxxxxx 0 000000000 . . . 0 xxxx . . .

x.xxxxxxxxxx 1 111111111 . . . 1 xxxx . . .

Fig. 2. The general form of values of functions for which the table maker’s dilemma occurs.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 3 2007

STANDARDIZATION AND TESTING OF IMPLEMENTATIONS 161

point numbers is described in [27]. It appeared even
before IEEE 754 was adopted. This test suite is orga-
nized as a set of Fortran programs, and it is designed for
testing only the addition, subtraction, multiplication,
and division.

• In [28, 29], a test suite designed specifically for
verifying the conformity to IEEE 754 is presented. It is
available at the site [30]. This test suite verifies all the
requirements of the standard for the arithmetic opera-
tions, square roods, remainder in integer division, and
conversions between floating point and integer num-
bers.

• The PARANOIA program [31, 32] was developed
by W. Kahan—one of the authors of IEEE 754—and it
remains a popular tool for testing the conformity to this
standard, although the verification is less thorough than
in the test suite [28, 29]. Only the basic arithmetic oper-
ations and the square root are tested.

• Another approach to designing test suites for veri-
fying the conformity to IEEE 754 is used in FPgen [33,
34]. Here, the test data include, in addition to special
values, the numbers satisfying certain patterns, for
example, in which the zero and the unit bits in the sig-
nificand alternate or in which the significand contains
exactly seven unit bits.

Studies devoted to testing a wide set of mathe-
matical functions.

• The test suite ELEFUNT [35] includes tests for
several mathematical functions organized in the form
of C and Java programs. These tests verify the correct-
ness of the returned values for the specific values of the
argument (0, 1, +∞, –∞, and NaN); in addition, certain
identities (for example, exp(x) · exp(–x) = 1) are verified
for some randomly generated arguments.

• The test suite UCBTEST [36] is designed for ver-
ifying the basic arithmetic operations and a fairly large
set of mathematical functions (more functions than in
ELEFUNT). This suite is organized in the form of For-
tran and C programs and a prescribed set of argument
values for different functions. Each test case verifies
that a certain function, for a given set of the argument
values, returns the correct value or a value very close to
it taking into account the round mode. No procedure for
choosing the test data is specified. Judging from the
analysis of the test suite, one can conclude that several
different ideas were used.

� Special floating point numbers such as 0, –0, NaN,
+∞, –∞, the smallest positive, the greatest positive, the
smallest and the greatest positive denormalized num-
bers, and the like were used as test data.

� The arguments for which the function under exam-
ination can be exactly represented by a floating point
number (for example, sin(0) = 0, cos(0) = 1, etc.) were
verified.

� Some values of the arguments were chosen taking
into account the structure of the algorithms used to
compute elementary functions. For example, some

algorithms used to compute the logarithm first reduce
the argument to the interval (0.5, 1] by multiplying or
dividing it by 2. In this case, the test data included the
boundaries of this interval and the boundaries of several
adjacent intervals, as well as some numbers that are
close to those boundaries.

• Similar approaches—the use of special values,
boundaries of the intervals that are often used by vari-
ous algorithms for computing the function under exam-
ination, and the numbers following a certain pattern or
randomly generated numbers—are used to generate
extensive test data in the Berkley test suite [37].

Studies in the framework of Arenaire project.
The Arenaire project includes, in addition to the studies
devoted to testing, studies devoted to efficient imple-
mentations of mathematical functions and to the analyt-
ical verification of the implementations.

• In [18–20, 38], the table maker’s dilemma is exam-
ined, and the arguments for which the correct computa-
tion of functions with a prescribed accuracy is most dif-
ficult are found. These numbers can be used as “incon-
venient” test data for practically any implementation of
the corresponding function.

• The MPCheck tool [39] is under development in
the framework of this project. It is designed for testing
the correctness of implementations of mathematical
functions from the viewpoint of preserving their mono-
tonicity and the correctness of rounding. The test data
include numbers that match certain patterns.

On the whole, the available studies devoted to the
formulation of requirements for implementations of
mathematical functions and to testing the conformabil-
ity to those requirements do not provide a systematic
unified approach to all the relevant problems. Nowhere,
except for the Arenaire project, the table maker’s
dilemma and the arguments for which the computation
of correct results is most difficult are considered. How-
ever, the Arenaire project does not consider the test data
based on the boundaries of the intervals that are specific
for a given function.

The most systematic requirements for the behavior
of mathematical functions are presented in the ISO/IEC
10967 standard. However, the procedure used to design
this standard is not explicitly described, which prevents
extending it to a larger set of functions, for example,
those included in the standard C library (in addition to
the elementary functions, it includes, for example, the
gamma and the Bessel functions).

Moreover, no test suites that verify the conformity to
ISO/IEC 10967 are currently available, and the author
does not have any information about the development
of such test suites.

Thus, the development of systematic methods for
formulating requirements for the implementations of
mathematical functions and the development of proce-
dures for the corresponding test generation are of cur-
rent interest.

162

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 3 2007

KULIAMIN

4. THE PROPOSED APPROACH

In the framework of the proposed approach, a
method for determining requirements for the imple-
mentations of a particular mathematical function and a
method for choosing test data for verifying if a particu-
lar function conforms to those requirements.

4.1. Method for Determining Requirements
for Implementations of Mathematical Functions

The proposed method for determining requirements
for the implementations of mathematical functions bor-
rows the major part of its ideas from ISO 10967 [3–5]
and from papers [7, 8] devoted to the development of
standards with high requirements for the correctness of
mathematical function computations. Some elements
of the proposed method are novel—they are not
described in the available literature but generalize some
popular techniques. Each item below refers to the
source where similar ideas are described or to common
practice if this item is a generalization of the common
approach to resolving similar problems.

In this paper, we consider requirements for the result
of the function computation; however, we do not con-
sider setting flags or raising exceptions. The latter
requirements should be formulated in accordance with
the general rules of IEEE 754, but a large number of
details that must be taken into account makes the for-
mulation of the requirements for this aspect of the func-
tion behavior a subject of a separate study.

The requirements for the results produced by imple-
mentations of mathematical functions can be divided
into several parts, which will be considered separately.

• Domain of a function and singular points.
� Domains (common practice). For all the values of

the argument for which the function is defined, its
implementation must return a certain result that can be
equal to +∞ or –∞ if the value of the function is beyond
the range of the floating point numbers and if the round
mode requires such a result; however, the result cannot
be NaN.

� Limiting values [8]. For all arguments where the
function is not defined (including singular points) but
has a unique limit maybe equal to +∞ or –∞, the imple-
mentation must return the value of this limit.

� One-sided limits at 0. (Common practice for par-
ticular functions). If a function has a singularity at zero
but has no infinite limit at this point, one-sided limits
must be considered. At 0, the implementation must
return the limit of the function as x +0, if it exists;
at –0, the returned value must be equal to the limit as
x –0, if such a limit exists. An example of such a
function is the cotangent: it is usually assumed that
cot(0) = +∞ and cot(–0) = –∞ (see the discussion of odd
functions below).

� Complete indefiniteness [8]. In all the other cases,
NaN must be returned. Here are some examples:

sqrt(–1.0) = ln(–1.0) = sin(+∞) = NaN. A specific con-
sideration should be given to the arguments for which
there is no common opinion on the possible continuous
extension of the function to this point. An example is 00,
which is sometimes interpreted as 1 and sometimes as
NaN.

� Neighborhood of poles (common practice and [4]).
For the poles at which the value of the function tends to
infinity, the neighborhood in which the function value
is no longer representable must be determined. If this
neighborhood contains representable numbers, the
function implementation must return for them +∞, –∞,
the greatest or the smallest representable number
depending on the sign of the exact value and on the
round mode.

For example, the cotangent has a pole at 0, and its
behavior in the neighborhood of 0 is approximately as
that of 1/x. For many denormalized numbers, the recip-
rocal is not representable; therefore, the implementa-
tions of the cotangent must return +∞ or –∞ for many
numbers in the neighborhood of zero, depending on the
sign of the argument. The value of the cotangent for 2–1024

is 1.FFFFFFFFFFFFFF4995…16 · 21023. Therefore, in
the round modes toward 0 or toward –∞, the cotangent
must return the greatest positive representable (double
precision) number for all the positive numbers that do
not exceed 2–1024. In the round mode toward nearest or
toward +∞, the cotangent must return +∞ for this inter-
val. In these round modes, its value falls into the inter-
val of representable numbers only beginning with
1.000000000000116 · 2–1024.

� Neighborhoods of infinities for infinite limits (com-
mon practice for particular functions and [4]). For the
functions that tend to infinity as x +∞ or –∞, the
bounds on their representable values must be exactly
defined. Beyond these bounds, the implementation
must return +∞, –∞, the greatest or the smallest repre-
sentable number depending on the sign of the exact
value and on the round mode.

For example, exp(x) tends to +∞ as x +∞.
The greatest double precision number for which exp(x)
is also representable in double precision is
1.62E42FEFA39EF16 · 29 = 709.7827…10. For all
greater arguments, exp(x) must return +∞ in the round
mode toward nearest and toward +∞; for the other
round modes, it must return the greatest representable
number.

For single precision, the greatest number for which
exp(x) is also representable is 1.62E42E16 · 26 =
88.7228…10.

• Special values, values at 0, tangents, and
asymptotes.

� Infinities and –0 (common practice). For the spe-
cial values of the argument (–0, +∞, and –∞), the value
of the functions should be defined in the most natural
way. Usually, it is sufficient to define them as the limits
if those limits exist; otherwise, they are defined as NaN.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 3 2007

STANDARDIZATION AND TESTING OF IMPLEMENTATIONS 163

Many library functions are even or odd. For even
functions, it is quite natural to have f(–0) = 0; for odd
functions, it would be desirable to have f(–0) = –0.

Note that this rule contradicts the strange require-
ment of IEEE 754 that sqrt(–0) = –0. It would be more
reasonable to set this value to 0 (another reasoning rec-
ommends NaN, but this value results in the situation
x = y and sqrt(x) ≠ sqrt(y) because it is assumed that
0 = –0).

� The value at NaN (follows from the requirements
of IEEE 754). The value of any function at NaN must
be NaN.

� Exact values (common practice for particular func-
tions and [4, 16]). For certain arguments, the values of
a function are known exactly. If both values are repre-
sentable, then the function implementation must return
the exact value at such points. For example, exp(0) =
cos(0) = cosh(0) = 1, sin(0) = sinh(0) = tan(0) = arc-
sin(0) = 0, ln(1) = 0, etc.

� Neighborhoods of extremal values that are exact
values (common practice for particular functions and
[4]). In addition, if the derivative of a function at such a
point is equal to zero, then the implementation must
return the same value for all arguments in a certain
neighborhood of this point.

For example, the cosine has a zero derivative at 0;
therefore, the dependence of the distance between its
value and 1 is quadratic. The bounds of the neighborhood
of 0 for which the implementation of cosine must return
1 depend on the precision and on the round mode. For
double precision and rounding toward nearest the bound
is between 1.6A09E667F3BCC16 · 2–27 and the next rep-
resentable number because cos(1.6A09E667F3BCC16 ·
2–27) = 1.FFFFFFFFFFFFF80126…16 · 2–1

and cos(1.6A09E667F3BCD16 · 2–27) =
1.FFFFFFFFFFFFF7F12B…16 · 2–1. In the case of round-
ing toward +∞, the corresponding bound is 2–26

because cos(1.016 · 2–26) = 1.FFFFFFFFFFFFF0131…16 ·
2–1 and cos(1.000000000000116 · 2–26) =
1.FFFFFFFFFFFFEF12C…16 · 2–1.

For the round modes toward 0 or toward –∞, the cosine
is equal to 1 nowhere, except for 1. The same bounds for
single precision and for the round modes toward nearest
and toward +∞ are 2–12 and 1.6A09E616 · 2–12.

� Neighborhood of 0 (common practice for particu-
lar functions and [4]). If the value of a function at 0 is
representable but distinct from 0 even if the derivative
of the function is nonzero at 0, the same rule must be
used: the implementation must return the same value
for all floating point numbers in a certain neighborhood
of 0. This requirement follows from the fact that the
density of floating point numbers near 0 is greater than
near any other number.

For example, for exp(x), 1 must be returned in dou-
ble precision and in the round mode toward +∞ begin-
ning from –1.02 · 2–53 up to 0. In the round mode toward
nearest, this is true for the interval from –1.0 · 2–54 to
1.FFFFFFFFFFFFF16 · 2–53.

� Horizontal asymptotes (common practice for par-
ticular functions and [4]). If a function has horizontal
asymptotes, the boundary must be determined beyond
which the value must be constant for a particular round
mode.

For example, for exp(x) in double precision and the
round mode toward nearest, the implementation must
return 0 for up to –1.74910D52D305116 · 29 inclusive.
In the round mode toward 0 and toward –∞, the same
result must be returned for all negative numbers less
than or equal to –1.74385446D71C416 · 29. In the round
mode toward 0 and toward +∞, exp(x) must return
0 only for x = –∞; for the numbers not exceeding
−1.74385446D71C416 · 29, the result must be 2–1074.

� Asymptotics (common practice for particular func-
tions and [4, 16]). It seems natural to place the same
requirements upon the functions that have nonhorizon-
tal asymptotes or the functions that are asymptotically
close to other functions. For example ex ~ 1 + x for x ~ 0,
cosh(x) = (ex + e–x)/2 ~ ex for x ~ +∞, cosh(x) = (ex +
e–x)/2 ~ e–x for x ~ –∞, and sin(x) ~ x for x ~ 0.

However, in many cases, such requirements cannot
be formulated accurately for different round modes.
The point is that even a very small difference between
two asymptotically close expressions can lead to a dif-
ference in the significant bits of the significand. The
cause of this phenomenon is similar to the cause of the
occurrence of the table maker’s dilemma: some values
of certain functions are too close to representable num-
bers.

For example, consider the asymptotics ex ~ 1 + x for
x ~ 0 for double precision floating point numbers. For
|x | < 2–28, the difference between ex and 1 + x is less than
0.5 ulp; however, there are floating point numbers that
are much closer to 0 for which the significands of ex and
1 + x are different in the round modes toward –∞ and
+∞.

For example, for x = –1.800000000000116 · 2–52,
exp(x) = 1.FFFFFFFFFFFFD0134…16 · 2–1 and 1 + x =
1.FFFFFFFFFFFFCF12E16 · 2–1.

It seems that accurate requirements can be formu-
lated only for the asymptotics f(x) ~ kx or f(x) ~ –kx,
where k is a certain representable constant (for exam-
ple, sin(x) ~ x and tan(x) ~ x for x ~ 0) because no such
effects occur in such situations. The boundaries within
which such requirements can be formulated should be
accurately calculated for various round modes.

For example, for the implementation of the sine in
double precision and the round modes toward nearest,
the result must coincide with the argument on the interval
[–x0, x0], where x0 = 1.7137449123EF616 · 2–26. In the
round mode toward +∞, this requirement must be fulfilled
on the interval from 0 to x1 = 1.D12ED0AF1A27F2 · 2–26.
In the round mode toward –∞, the same must be true for
the interval [–x1, 0]. In the round mode toward 0, sin(x) =
x only at x = 0. Note that this is different from the
POSIX requirements (see above).

• Range of a function

164

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 3 2007

KULIAMIN

� Choosing a branch of a function (common prac-
tice). If a mathematical function is multivalued (in the
strong sense), its branch returned by the implementa-
tion must be thoroughly defined. The boundary values,
which often can be chosen in several ways, must be
defined so as to take into account the most widely used
variant.

For example, for the inverse trigonometric functions
and the inverse hyperbolic cosine, arctan(x) and arc-
sin(x) usually take the values between –π/2 and π/2, and
arccot(x) and arccos(x) usually take the values between
0 and π. For Arccosh(x) and roots of even degrees, the
branch for which these functions have nonnegative val-
ues is usually used.

� Preserving the range of functions [8]. Upper and
lower bounds on the function range for each connected
component of its domain must be preserved in the imple-
mentation. Otherwise, various troublesome effects can
occur.

For example, if an implementation of arctan(x)
returns, for large positive arguments, the nearest float-
ing point number to π/2, it may happen that this number
is greater than π/2. For single precision floating point
numbers, this is exactly the case: the nearest single pre-
cision floating point number to π/2 is 1.921FB616 =
13176795/8388608 > π/2. In this case, we have
tan(arctan((230)) = –2.2877… · 107, which contradicts
the main property of the inverse functions.

� Denormalized values (used for designing test
suites for some functions in UCBTEST [36]). Since the
denormalized numbers are specific, the intervals on
which the values of a function are denormalized must
be thoroughly defined.

For example, in double precision, the value of
exp(x) remains denormalized for all negative x up to
−1.6232BDD7ABCD316 · 29 (this number depends on
the round mode). For all greater arguments, exp(x) is
normalized for all round modes.

• Monotonicity and Sign Preservation
� Preservation of monotonicity [4, 8]. On all the

intervals for which a mathematical function is mono-
tone, its implementation must be monotone as well.
This is required to adequately represent essential prop-
erties of mathematical models in their numerical imple-
mentation.

However, this rule becomes senseless in the
domains where the function often changes the direction
of monotonicity, i.e., where the length of the monoto-
nicity interval is equal to or less than the unit in the last
place of the argument’s significand. Examples of such
functions are the trigonometric functions (an exception
from this rule is discussed in [4]) and the Bessel func-
tions (not mentioned in [4]) for large values of the argu-
ment.

� Preservation of sign [4, 8]. The sign of the correct
implementations must coincide with the sign of the

exact value of the function. If the value of a function is
equal to 0, then the implementation must return 0.

It is mentioned in [4] that this requirement may not
be fulfilled when the unit in the last place of the argu-
ment is greater than the interval on which the function
preserves its sign. This is the case for the trigonometric
functions for large values of the argument. However,
the use of correctly rounded values for the function
result makes such stipulations unnecessary.

• Symmetries and Periodicity
� Evenness and oddness [4, 8]. If a mathematical

function is even or odd, the implementation must pos-
sess the same property.

� Horizontal symmetries (author’s remark). If a
function is symmetric about some other representable
values of the argument (for example, if f(1 – x) = –f(x)),
the similar property for the implementation cannot be
always retained. Indeed, 1 – x can be not representable
when x is representable. Such cases must be considered
separately; the requirement can be imposed only if both
values of the argument are representable. If a function
is symmetric about a not representable value of the
argument (for example, sin(π – x) = sin(x)), the symme-
try for the implementation can be fulfilled only approx-
imately; therefore, it cannot be strictly required.

� Other symmetries (author’s remark and a generali-
zation of the preceding rules). In general, all the impor-
tant functional equations satisfied by the function must
be analyzed, and it should be decided if it is reasonable
that these equation must be satisfied in the implementa-
tion. The values of the argument for which the equation
is satisfied must be explicitly specified. For example,
the relations Γ(1 + x) = x · Γ(x) and Γ(1 – x) = –x · Γ(–x)
must be fulfilled for positive integer arguments; other-
wise, the fundamental relation Γ(n) = (n – 1)! can be
violated for positive integer n.

For the periodicity property, the same reasoning
applies. If the period is representable, the periodicity
must be fulfilled only for the numbers that are repre-
sentable together with their shift by the period or by a
multiple of the period. If the period is not representable,
the implementation can be periodic only approxi-
mately.

For the arguments for which the unit in the last place
is greater than the period, the periodicity requirement is
senseless.

• Correct Rounding (extension of the rules of IEEE
754 [8]).

In addition to the constraints listed above, one
should require that the result returned by any imple-
mentation could be obtained from the exact value of the
function by applying the rounding procedure adopted
in the current configuration.

The monotonicity and sign preservation require-
ments are fulfilled if the rounding procedure is cor-
rectly organized. However, the results obtained in the
round modes toward 0, toward +∞, or toward –∞ some-

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 3 2007

STANDARDIZATION AND TESTING OF IMPLEMENTATIONS 165

times contradict the requirement of preserving the con-
straints on the range of functions. In this case, a deci-
sion may be sometimes made depending on the func-
tion; hence, some of its important properties can be
violated. More often, it is convenient to assume that the
support of the round mode has a higher priority because
the users that employ such a mode should be aware of
its consequences. It is sometimes assumed that it is use-
less to require the accuracy of 0.5–1 ulp, especially in
the domains where the interval of a significant function
variation is shorter than the unit in the last place. How-
ever, my opinion is that standard implementations of
general-purpose mathematical functions must always
produce the most accurate results independently of
whether these results have sense when considered as
approximate. This requirement is caused by the fact
that most users employ library implementations with-
out performing the analysis of function properties.
Hence, they cannot notice that the result is inaccurate
simply because the function varies too quickly in the
neighborhood of the argument value under examina-
tion. Thus, the user should obtain the most accurate
result with respect to the given argument. The reason-
ing concerning the best interpretation of this result is
better to be left to the user; indeed, there is some chance
that the user really needs the correct value of the func-
tion for a particular argument.

The implementations in which the decrease in accu-
racy is justified by improved efficiency cannot be used
as standard ones and cannot be applied in the general
case. Such implementations may (and should) be devel-
oped for specific problems; in such cases, constraints
on admissible errors in different domains of the argu-
ment and deviations from the general-purpose stan-
dards should be explicitly determined.

4.2. A Method for Conformity Test Generation

The method (presented in the preceding section) for
determining requirements for implementations of a
mathematical function provides a subdivision of its
domain (the set of floating point numbers) into a set of
intervals. Each interval is characterized by a unique set
of function properties.

In each of these intervals, the value returned by the
function implementation is either fixed, or is deter-
mined by an asymptotics, or is determined by the sim-
ple rule of rounding the exact value of the function in
accordance with the current round mode.

To generate a test suite, one must know how to find
the correctly rounded value of the function. To this end,
one must know how to calculate the function much
more accurately than it is possible within the set of
floating point numbers under consideration. This can be
done in several ways.

• Using symbolic calculations and computations to
an arbitrary accuracy (for example, Maple [40], Math-
ematica [41], or MATLAB [42]).

• Using libraries of correctly rounded functions,
such as those based on the studies by Ziv [43], IBM
accurate Portable MathLib [44], GNU MPFR [45], lib-
mcr [46] developed by Sun, or the SCSLib [47] and
CRlibm [48] libraries developed in the framework of
the Arenaire project [6, 49–52].

• One can develop a special implementation of a func-
tion based on the methods presented in books [22, 23] or
based on the interval computation methods [53–56].
Interval computations have an additional advantage of
guaranteeing the validity of the bounds that contain the
result. In particular, interval computations make it possi-
ble to obtain correct results even if the problem itself is
unstable. With interval computations, no unstable
sequence effect described in Section 2.2 can occur.

The main ideas of the method for designing test
suites presented below are fairly simple and can be
summarized as follows.

• The test data include the boundaries of the inter-
vals corresponding to the unique properties of the func-
tion being tested and the boundaries of the intervals of
the floating point numbers that have a special structure
(for example, boundaries of the denormalized positive
numbers).

• Some points within these intervals selected using
certain rules are also included in the test suite.

• The points for which the computation of the cor-
rectly rounded value of the function is most computa-
tionally costly due to the table maker’s dilemma [20]
are included in the test suite. This is because the major-
ity of simple implementations produce incorrect results
for such arguments.

• Finally, we include the points that are good
approximations of the arguments for which the value of
the function is known exactly if such values are impor-
tant in practice. For example, cos(x) = 1/2 for x = ±π/3 +
2nπ. Although none of such x is representable, one can
find many floating point numbers that are so very close
to them that the correct result in the round mode toward
nearest is equal to 1/2. Such arguments provide a good
test for the correctness and accuracy of the computa-
tions.

The floating point numbers that are most close to the
roots of the function are an important particular case of
this rule. The use of such arguments in test suites helps
verify the sign preservation.

In more detail, the main steps of the proposed
method are as follows.

1. First, the set of the boundaries of the intervals of
specific behavior of the function and the floating point
numbers possessing a specific structure are added to the
initial set of the test data.

� To this end, we add to the initial set 0, +∞, –∞, the
greatest and the smallest representable numbers, and
the greatest and the smallest positive and negative
denormalized numbers.

166

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 3 2007

KULIAMIN

These numbers subdivide the set of floating point
numbers into intervals of the numbers possessing a spe-
cific structure.

� When determining the requirements for the imple-
mentations of a function, the floating point numbers are
also subdivided into intervals following the procedure
described above. Within each of these intervals, a spe-
cific set of constraints on the possible results of the
function is in effect.

For example, these are the intervals of monotonicity
and constant sign of the function, the intervals on which
the function has a constant value or is described by a
simple asymtotics, or the intervals on which the func-
tion is not defined.

In addition, one must consider the preimages of the
intervals selected at the preceding step. The preimages
of the positive and negative numbers give the constant
sign domains; therefore, here we additionally obtain
only the subdivision of these domains into the preim-
ages of normalized and denormalized values. Each
such preimage is decomposed into a union of finite sets
of intervals, which also must be included in the set of
intervals.

The number of the intervals selected as described
above can be very large for some functions; the com-
plete set can be practically infinite. For example, this is
the case for the trigonometric functions: each interval
[nπ/2, (n + 1)π/2] is the intersection of the monotonic-
ity and sign preservation intervals; hence, it should be
included in the set of intervals. In such situations, one
should find some rules for selecting intervals; these
rules should be based on specific properties of the func-
tion behavior, so that they reduce the set of intervals to
a reasonable size. Depending on the computational
resources assigned for testing, the number of intervals
may be from several dozens to several thousands. For
example, for the trigonometric functions, the rules
might be as follows. The behavior of the function on the
selected intervals should be specific in a certain sense.
This can be achieved by considering the best possible
approximations of the floating point numbers to the
multiples of π and π/2. On the intervals containing such
numbers, the values of the trigonometric functions are
most close to zero and to their extreme values. The best
approximations to the multiples of π and π/2 can be
found by an expansion of π into a continued fraction
(see [57, 50]); this yields about 2000 numbers. Choos-
ing the intervals that contain the selected numbers, we
obtain a set of intervals of a reasonable size. It is a good
idea to add to this set about two or three dozens of inter-
vals of the form [nπ/2, (n + 1)π/2] that are most close to
zero.

2. The resulting initial set subdivides the floating
point numbers into a set of intervals.

To determine the test values within these intervals,
we choose two integer parameters n and k. The first
parameter denotes the “frequency” of the selected

points, and the second parameter determines the size of
the continuous regions covered by those points.

Each of the intervals is subdivided into n shorter
intervals that contain the same number of floating point
numbers. This yields (n + 1) points—(n – 1) internal
and two boundary points. Then, we choose all floating
point numbers in the interval under consideration that
are at a distance not greater than k floating point num-
bers from the points obtained at the preceding step.
The resulting set is called the trial set.

For each of the initial intervals, individual n and k
may be used; thus, some regions can be covered more
densely than others.

3. The trial set should be completed with some
points for which the correctly rounded result can be
obtained only by performing much more accurate com-
putations than is stipulated by the precision of the float-
ing point numbers (see the discussion of the table
maker’s dilemma above and [20, 38]).

Moreover, not only the values that require the most
accurate computations should be used, but also those
values that require not less than m > 0 additional bits in
the significand compared to the precision of the floating
point numbers.

The available practical results and a reasoning based
on probability theory [19] show that, for the floating
point numbers that have K bits in the significand and P
bits in the exponent, such values exist for m < K + P; for
larger m, such values are very rare. It makes no sense to
take very small m because it may happen that the corre-
sponding values are too numerous. Moreover, modern
processors often perform actual computations using
double-extended precision numbers; hence, the double
precision arguments with m < 12 do not provide practi-
cally useful tests. Experiments (see [19]) show that, for
double precision, m = 40 is a good choice: usually, there
are several thousand test values of the argument for this m.

4. If the function under examination has some prac-
tically important properties related to its exact values
for certain not representable values of the argument, the
floating point numbers that provide the best approxima-
tion of such arguments should be found.

First of all, the best approximations of the function
roots should be considered.

Some important examples are provided by the trig-
onometric functions. These are the relations sin(x) = 1/2
for x = π/6 + 2nπ and 5π/6 + 2nπ, sin(x) = –1/2 for x =
–π/6 + 2nπ and –5π/6 + 2nπ, cos(x) = 1/2 for x = ±π/3 +
2nπ, cos(x) = –1/2 for x = ±2π/3 + 2nπ, tan(x) = cot(x) = 1
for x = π/4 + nπ, and tan(x) = cot(x) = – 1 for x = –π/4 +
nπ. The best approximations of such arguments can be
found by expanding π and π/3 into continues fractions [58].

5. Sometimes, hypotheses concerning possible
errors in the computation of the function for certain
arguments having a special structure (for example, for
the arguments that have exactly one unity in their sig-
nificand or exponent, or in which the unities alternate

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 3 2007

STANDARDIZATION AND TESTING OF IMPLEMENTATIONS 167

with zeros in the significand or exponent) may be used.
Then, some numbers having such a structure should be
added to the trial set. The hypotheses in question can be
often formulated in the form of a set of templates for the
bit representation of the argument.

6. Finally, the trial set should be completed with sev-
eral NaN values. They can be chosen using some rules;
for example, the values with the maximal and the min-
imal significand, or various templates for the signifi-
cand may be used.

The trial set thus obtained can be used for testing the
implementations of the function under examination.

In the framework of the proposed method, the num-
ber of the test data, the thoroughness of testing, and the
computation time for performing the tests can be con-
trolled by varying the parameters n and k at step 2, m at
step 3, and the accuracy of the approximations at step
4. The rules used to select the intervals at step 1 and the
templates at step 5 may be also varied.

4.3. An Example of Using the Proposed Method

In this section, we consider the results of a practical
implementation of the proposed method for formulating
the requirements and generating a test suite for the expo-
nential function exp(x) in double precision. In what fol-
lows, we use the term exponential to denote the exponen-
tial function.

An analysis of the properties of the exponential per-
formed in accordance with the method presented in
Section 4.1 and the selection of the denormalized and
exceptional numbers subdivide the real line into the
points and intervals presented in Table 2. The values of
the boundary points are shown in Table 3. The expres-
sions x + + and x – – for the floating point number x
denote the next and the preceding floating point num-
ber, respectively.

The test data included the boundaries of the inter-
vals and some points within them chosen according to
item 2 of the method described above.

The test data also included about 10000 numbers for
which the table maker’s dilemma for the exponential
manifests itself. These values were found in the course
of the large-scale search of such values for the elemen-
tary functions in the framework of the Arenaire project.

For large negative values of the argument where the
exponential is already positive but its values are small
denormalized numbers, it increases very slowly. There-
fore, the preimage of each such number is a long inter-
val of negative numbers; the exponential of all the num-
bers within this interval is equal to the given denormal-
ized number provided that the given round mode is
used. About a dozen of boundaries of such intervals
were added to the test suite; and, for each interval, one
number within it was also added.

Furthermore, the test data included several floating
point numbers such that the values of the exponential

for the adjacent numbers differ exactly in the last bit of
the significand.

We also added to the test suite the numbers 1.0, –1.0,
their neighboring numbers, and, finally, five different
representations of NaN.

As a result, we obtained the test suite consisting of
15804 values of which 2604 are designed for testing
the exponential in the round mode toward nearest, and
4400 values are used for testing in each of the three
other round modes. The testing results obtained on var-
ious platforms are presented in Tables 4 and 5.

Table 4 shows the testing results for platforms A–L
that support different round modes. Platforms M–Q
support only rounding toward nearest; for this reason,
the results for these platforms are placed in Table 5
along with the results for platforms A–L obtained for
this round mode. Below, we present an analysis of the
errors, discuss them, and describe the platforms used in
the testing.

ANALYSIS OF THE ERRORS

For the convenience of the analysis, the floating
point numbers were subdivided into the following
classes: positive normalized numbers, negative normal-
ized numbers, positive denormalized numbers, negative
denormalized numbers, 0, –0, +∞, –∞, and NaN.

We assume that the incorrect class of the result is a
more serious error than an incorrect result within the
correct class. The second kind of errors in Tables 4 and
5 is called computational errors. Both types of errors—
those that change the class of the result and the ones
that do not—were classified into serious and small
errors depending on the distance between the correct
and the actual result (in terms of the last bits of the sig-
nificand).

An error in the class of the result is said to be serious
if the correct or the actual result is NaN and they are dif-
ferent, or if the correct and the actual result belong to
the classes that are not adjacent to each other, or if the
classes are adjacent but the distance between the cor-
rect and the actual results is greater than 230 floating
point numbers. Two classes are said to be adjacent if
there are at least two numbers in them at a distance not
greater than 230 floating point numbers.

A computational error is said to be serious if the cor-
rect and the actual results are at a distance exceeding 230

floating point numbers.

For small errors of both types, we calculated the
sum of the distances between the correct and the actual
result in terms of the intervals between the adjacent
floating point numbers. This makes it possible to assess
the general structure of such errors; in particular, one
can find out how many errors are greater than 1 bit.

168

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 3 2007

KULIAMIN

TESTING RESULTS
Below, we describe the platforms used in the testing

and provide additional information concerning the test-

ing results. A description of various types of errors dis-
covered for different platforms is presented in Table 6.
Altogether, nine types of errors and inaccuracies were
distinguished (the errors of types 2', 3', and 3'' are of the
same nature as the errors of types 2 and 3).

The right bottom cell of Table 6 presents the results
describing the computational inaccuracies. In parenthe-
ses after the platform symbol, we give the maximal dis-
tance between the correct and the actual result in terms
of the intervals between the adjacent double precision
floating point numbers, If this distance does not exceed
two, the superscript indicates the number of situations
in which this distance is equal to two. For platforms F
and G, no such results are presented because the inac-
curacies found in our tests are too numerous.

• Platform A is a dedicated POSIX compatible oper-
ating system (OS) for Intel Pentium II.

Platform B corresponds to various versions from
(2.1.3 to 2.3.2) of the glibc library under RedHat Linux
of different versions on Intel Pentium II, Pentium 4, and
Xeon. All the results for this platform are completely
identical; i.e., the number of errors, the values of the
arguments on which these errors occur, and the com-
puted values of the function are identical.

Table 2. Intervals of the specific behavior of the exponential function

Left endpoint Right endpoint Comments

–∞ exp(–∞) = 0

–max x1 The value of the exponential in the round toward nearest mode is 0.

x1 + + x2 Rounding of the exponential toward –∞ gives 0 and rounding toward the nearest gives
a nonzero value.

x2 + + x3 The values of the exponential are denormalized.

x3 + + x4 – – The values of the exponential are positive, normalized, and less than unity.

x4 x5 – – The value of the exponential rounded toward +∞ is equal to unity and is distinct from
unity in the other round modes.

x5 –x6 The value of the exponential rounded toward +∞ or toward nearest is equal to unity;
the values of the argument are negative and normalized.

(–x6) + + –min The values of the argument are negative and denormalized.

–0 exp(–0) = 1.

0 exp(0) = 1.

min x6 – – The values of the argument are positive and denormalized.

x6 x7 – – The value of the exponential rounded toward –∞ or toward nearest is equal to unity;
the values of the argument are positive and normalized.

x7 x8 – – Rounding of the exponential toward –∞ gives 1 and rounding toward nearest gives
a different value.

x8 x9 The value of the exponential is greater than unity and does not exceed max.

x9 + + max The value of the exponential is +∞ in the round modes toward nearest and toward +∞

+∞ exp(+∞) = +∞.

NaN exp(NaN) = NaN.

Table 3. The notation used in Table 2

Notation Value

min 1.016 × 2–1074

max 1.FFFFFFFFFFFFF16 × 21023

x1 –1.74910D52D305216 × 29

x2 –1.74385446D71C416 × 29

x3 –1.6232BDD7ABCD316 × 29

x4 –1.016 × 2–53

x5 –1.016 × 2–54

x6 1.016 × 2–1022

x7 1.016 × 2–53

x8 1.016 × 2–52

x9 1.62E42FEFA39EF × 29

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 3 2007

STANDARDIZATION AND TESTING OF IMPLEMENTATIONS 169

Platform C corresponds to various versions (from
2.3.2 to 2.3.5) of the glibc library under RedHat Linux
of different versions on AMD Athlon XP. All the results
for this platform are also identical.

Platform D corresponds to OS Solaris 10 (SunOS
5.10) on the Sun UltraSpark IIIi processor.

Platform E corresponds to FreeBSD 5.4 on Intel
Pentium 4.

On the whole, the testing results are similar on all
these platforms. Serious errors were detected only on
platforms A and D; small errors in the class of the result
are almost identical on platforms B, C, D, and E (see
Table 6). The computational inaccuracies are small and
do not exceed 1 bit.

The computational inaccuracies on platforms A and
B are identical, which is probably explained by the use
of the same procedure for computing the exponential
that was recommended for the Intel processors as early

as in the times of i386: exp(x) = . This procedure
produces incorrect results for +∞ and –∞ (error of type 1)
on platform A. In glibc, these cases are processed sep-
arately (see the comments to glibc in [59]).

On platform D an error of type 2 (and also of type 2')
was detected that is characteristic only of this platform.
Due to this error, exp(x) < x for large positive x.

• Platform F corresponds to OS SUSE 10.0 (glibc
2.3.5) on the IBM PowerPC 750 processor.

Platform G corresponds to OS SUSE 10.0 (glibc
2.2.5) on the IBM s390 processor.

The testing results for these platforms are amazing.
In the round mode toward nearest, all the results are

2
xlog2e()

absolutely correct: not a single error and even not a sin-
gle computational inaccuracy were discovered. This
fact was also verified using a wider set of data consist-
ing of more than 38000 values. However, in the other
round modes, arbitrarily large errors can occur. It seems
that such a behavior is explained by the specific imple-
mentation of the exponential for the IBM processors,
which operates completely correctly in the round mode
toward nearest but is poorly debugged for the other
round modes.

On platform F, the most serious errors occur in the
round modes toward nearest, and toward –∞. In the
round mode toward +∞, considerable computational
error were detected that do not change the class of the
result. On platform G, the situation is reverse.
For example, on platform F in the round modes
toward 0 and toward –∞, many values of the expo-
nential are negative; moreover, fairly large (in abso-
lute value) results are encountered. For example,
exp(1.8440884407690585) in the round mode toward
−∞ is evaluated as –1.3766469207992498 · 106. Other
amazing results for platform F are as follows:
exp(−0.75067340262097160) is 1.11268633387184180 ·
1015 in the round mode toward –∞; exp(1) is
4.00921547900944878 in the round mode toward –∞.

• Platform H is OS Microsoft Windows XP (the
library Microsoft Visual Studio 6, linked in the debug
mode) on Intel Pentium M.

Platform I is OS Microsoft Windows 2000 (the
library Microsoft Visual Studio.NET 2003, linking in
the debug mode) on Intel Pentium 4.

Table 4. The results of testing the implementations of the exponential in all round modes

Platform Number of
tests

Detected errors and inaccuracies

Incorrect class of the result Computational errors

Serious

Small

Serious

Small

Number Sum of dis-
tances Number Sum of dis-

tances

A 15607 8 0 0 0 6080 6080

B 15607 0 48 48 0 6080 6080

C 15607 0 48 48 0 6197 6197

D 15607 32 16 16 32 7226 7226

E 15607 0 42 42 0 7373 7373

F 15607 301 91 143386 5572 1739 ~3 × 108

G 15607 230 21 22 5937 1805 ~3 × 108

H 15607 0 54 54 0 8031 8336

I 15607 0 54 54 0 7682 7685

J 15607 0 54 54 0 7500 8146

K 15607 8 54 54 0 9373 302308

L 15607 0 54 54 0 10598 77920

170

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 3 2007

KULIAMIN

Platform J is OS Microsoft Windows XP-64 (the 64-
bit library Microsoft Visual Studio.NET 2005) on AMD
Athlon-64 X2.

Platform K. Here, the results of performing the tests
under various versions of Microsoft Windows (XP and
2000) on Intel processors (Pentium 4 and Pentium M)
for the libraries Microsoft Visual Studio 6 and 7 (.NET
2003) linked in the release mode are presented. These
results are completely identical.

Platform L. Here, the results of performing the tests
under Microsoft Windows 2000 on Pentium 4 for the
32-bit libraries Microsoft Visual Studio.NET 2005 and
Intel C++ Compiler 9.1 are presented. The results are
identical.

When a project is linked in Microsoft Visual Studio,
one of the two link modes may be chosen: debug or
release. In versions 6 and 7 (.NET 2003), different
libraries of mathematical functions are used in these
two modes. They produce different results for the same
functions and for the sane arguments. In the release
mode, there are more errors. There is a flag in the
advanced linking options in Visual Studio that regulates
the correctness of floating point computations (Float-
ing-Point Consistency). In the release mode, this flag is
on by default, which is the cause of differences in the
results.

On the whole, the results on these platforms are sim-
ilar and demonstrate two tendencies: the results of the
debug versions of Visual Studio improve from version
6 to version 7; and they improve slightly more in 64-bit
version 8 (although the number of 2-bit errors in the last
case is greater).

The release versions of the libraries in versions 6
and 7 are identical. They contain one serious error of
type 1 and many inaccuracies. Errors up to 680 bits are
encountered, which implies the incorrectness of the last
five decimal digits. It seems that the 32 bit libraries in
version 8 were developed on the basis of the libraries
used in versions 6 and 7; some errors were corrected, ad
the errors became less significant although slightly
more numerous.

Platform M is an implementation of Sun Java ver-
sion 1.1.8 under Microsoft Windows 2000.

Platform N is Microsoft .Net 1.1 under Microsoft
Windows 2000.

Platform O. Here, the results of performing the tests
for Java of various versions beginning with 1.2 (1.2, 1.4,
and 1.5) under various operating systems (Microsoft
Windows 2000, SUSE 10.0, and RedHat 9.3) of differ-
ent manufacturers (Sun, IBM, Bea) are presented. All
these results are completely identical.

Table 5. The results of testing the implementations of the exponential in the round mode toward nearest

Platform Number of
tests

Detected errors and inaccuracies

Incorrect class of the result Computational errors

Serious

Small

Serious

Small

Number Sum of dis-
tances Number Sum of dis-

tances

A 2554 2 0 0 0 1128 1128

B 2554 0 0 0 0 1128 1128

C 2554 0 0 0 0 1130 1130

D 2554 16 0 0 0 1152 1152

E 2554 0 0 0 0 1128 1128

F 2554 0 0 0 0 0 0

G 2554 0 0 0 0 0 0

H 2554 0 19 19 0 1267 1267

I 2554 0 5 5 0 1197 1197

J 2554 0 3 3 0 1296 1296

K 2554 2 18 18 0 1825 73709

L 2554 0 19 19 0 1788 9389

M 2554 2 1 214 0 1609 37316

N 2554 0 1 214 0 1609 37316

O 2554 0 0 0 0 1153 1153

P 2554 0 0 0 0 1117 1117

Q 2554 0 0 0 0 1147 1147

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 3 2007

STANDARDIZATION AND TESTING OF IMPLEMENTATIONS 171

Platforms P and Q are, respectively, Microsoft .NET
2.0 (32-bit version under Windows 2000) and .NET 2.0
(64-bit version under Windows XP).

Java and .NET perform computations only in the
round mode toward nearest. Therefore, the tests for
these platforms were performed only for this round
mode.

Among them, only platform M contains a serious
error of type 1, which was corrected in the next version
of Java.

Platforms M and N contain the same error of type 9,
and all the computational inaccuracies in them are com-
pletely identical. It seems that Microsoft developed the
first version of the mathematical functions for .NET on
the basis of Java version 1.

The identical results for Java beginning with version
1.2 are explained by the stricter standard for the imple-
mentations of mathematical functions introduced by
Sun in this version of Java.

On all the other platforms, there are only computa-
tional errors; all of them are 1-bit errors; and they are
not numerous.

The results obtained show that all the serious errors
(except for the very strange results for platforms F and

G) were detected using the tests constructed on the
basis of the analysis of intervals of the homogeneous
behavior of the exponential function. The additional
10000 tests for the accuracy of the computations make
it possible to estimate the general form of the computa-
tional errors and their distribution on he whole. Thus,
both components of the test suite are a good comple-
ment of each other and make it possible to test all the
aspects of the behavior of implementations of mathe-
matical functions.

5. CONCLUSIONS

The diversity of applications of mathematical mod-
eling, the expanding requirements for their reliability
and accuracy, and the necessity to get the same results
on various platforms make the problem of standardiz-
ing the evaluation of mathematical functions very
urgent. Despite thorough studies in this field (see, e.g.,
[7, 8, 18–20, 38, 49–52]) in the framework of the
Arenaire project [6] and the recent adoption of ISO
10967 [3–5], which determines the requirements for the
implementations of mathematical functions that are
independent of software and hardware platforms and of
programming languages, many issues remain unre-

Table 6. The detected types of errors and inaccuracies on various platforms

Type of error Error or inaccuracy Platforms

Serious change
in the class
of the result

1. exp(±∞) returns NaN A, K, M

2. exp(x > x9) returns the greatest single precision number
(3.4028234663852885 × 1038) in the round modes toward nearest
and toward +∞

D

3. Incorrect results for many arguments with a considerable change
in the class of the result in the round modes toward +∞, 0, and –∞

F, G

Small change
in the class
of the result

4. exp(x > x9) returns +∞ in the round modes toward 0 and toward –∞ B, C, D (for large numbers),
I (for large numbers), J

5. exp(x > x9) returns the greatest double precision number in the round
modes toward nearest and toward +∞

H, I (sometimes), K, L

6. exp(x ≤ x1) returns 0 in the round mode toward +∞ B, C, D, E (sometimes), F, G, H,
I, J, K, L

7. for x1 < x ≤ x2, exp(x) returns a nonzero result in the round mode
toward nearest

H, I, J, K (sometimes), L

8. for x1 < x ≤ x2, exp(x) sometimes returns a nonzero value in the
round modes toward 0 and toward –∞

K

9. exp(x9) returns +∞ M, N

3'. Incorrect results for many arguments (the result may fall in an adjacent
class) in the round modes toward +∞, toward 0, and toward –∞ (see 3)

F, G

Serious com-
putational error

2'. exp(x > x9) returns the greatest single precision number
(3.4028234663852885 × 1038) in the round modes toward 0
and toward –∞

D

3''. Incorrect results for many arguments (the class of the result is pre-
served) in the round modes toward +∞, toward 0, and toward –∞ (see 3)

F, G

Small compu-
tational error

K(680), M(333), N(333), L(17),
J(2646), H(2306), I(23), A(1), B(1),
C(1), D(1), E(1), O(1), P(1), Q(1)

172

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 3 2007

KULIAMIN

solved. First, the attempts to formulate a systematic
procedure for determining the requirements for the
implementations of mathematical functions (see, e.g.,
[7, 8]) fail to take into account some details (one-sided
limits at zero, neighborhoods of poles, infinities, and
exact values, asymptotics, symmetries (except for
evenness and oddness)). Second, there are no studies
concerning the procedure of constructing test suites
that systematically test all the aspects of the behavior of
implementations of such functions.

In this paper, we proposed a solution of both prob-
lems. The presented method for determining the
requirements for the implementations of mathematical
functions is based on the ideas that were formulated in
many studies; actually, it is an extension of the IEEE
745 standard for arithmetic operations to other mathe-
matical functions. The only contribution of the author
of this paper is a systematic presentation of all those
ideas.

The method for test suite construction for verifying
the fulfillment of those requirements described in Sec-
tion 4.2 is also based on the results of some studies con-
cerning the exact calculation of mathematical functions
[20] and on the clear idea of decomposing the domain
of the function to be tested into intervals on which the
function behavior is homogeneous. However, I am not
aware of the works describing the construction of test
suites for mathematical functions that take into account
all the aspects discussed in this paper.

The results of applying the proposed method for the
fairly simple exponential function (they are described
in Section 4.3) show that there is still a far way to the
practical implementation of strict standards for the
implementations of mathematical functions. For the
round toward nearest mode, most implementations pro-
duce good results (there are only minor computational
inaccuracies). However, other round modes present
severe difficulties. The practical importance of the sup-
port of other round modes is explained by their useful-
ness for systems of reliable interval computations,
which are very helpful in mathematical modeling of
unstable problems.

The methods proposed in this paper make it possible
to gradually overcome the difficulties discussed above
by stating practical problems of standardizing and test
suite development.

REFERENCES
1. IEEE 754-1985: IEEE Standard for Binary Floating-

Point Arithmetic, New York: IEEE, 1985.
2. IEC 60559:1989. Binary Floating-Point Arithmetic for

Microprocessor Systems, Geneve: ISO, 1989.
3. ISO-IEC 10967-1:1994. Information Technology—Lan-

guage Independent Arithmetic—Part 1: Integer and
Floating Point Arithmetic, Geneve: ISO, 1994.

4. ISO-IEC 10967-2:2002. Information Technology—Lan-
guage Independent Arithmetic—Part 2: Elementary
Numerical Functions, Geneve: ISO, 2002.

5. ISO-IEC 10967-3:2002. Information Technology—Lan-
guage Independent Arithmetic—Part 3: Complex Inte-
ger and Floating Point Arithmetic and Complex Elemen-
tary Numerical Functions, Draft Geneve: ISO, 2002.

6. http://www.inria.fr/recherche/equipes/arenaire.en.html.
7. Hanrot, G., Lefevre, V., Muller, J.-M., Revol, N, and

Zimmermann, P., Some Notes for a Proposal for Ele-
mentary Function Implementation in Floating-Point
Arithmetic, in Proc. of Workshop IEEE 754R and Arith-
metic Standardization, ARITH-15, 2001.

8. Defour, D., Hanrot, G., Lefevre, V., Muller, J.-M.,
Revol, N., and Zimmermann, P., Proposal for a Stan-
dardization of Mathematical Function Implementation
in Floating-Point Arithmetic, Numerical Algorithms,
2004, vol. 37, nos. 1–4, pp. 367–375.

9. IEEE 854-1987: IEEE Standard for Radix-Independent
Floating-Point Arithmetic, New York: IEEE, 1987.

10. Goldberg, D., What Every Computer Scientist Should
Know about Floating-Point Arithmetic, ACM Comput.
Surveys, 1991, vol.23, no. 1, pp. 5–48.

11. Sternbenz, P., Floating-Point, Englewood Cliffs: Pren-
tice-Hall, 1974.

12. Camlet, J. and Lefevre, V., Toward the Integration of
Numerical Computations into the OMSCS Framework,
in Proc. 7th Int. Workshop on Computer Algebra in Sci-
entific Computing (CASC 2004), St. Petersburg, 2004,
pp. 71–79.

13. http://www.fas.org/spp/starwars/gao/im92026.htm.
14. http://www.ima.umn.edu/~arnold/disasters/ariane5rep.html.
15. ISO-IEC 9899:1999. Programming Languages—C,

Geneve: ISO, 1999.
16. IEEE 1003.1-2004.: Information Technology—Portable

Operating System Interface (POSIX), New York: IEEE,
2004.

17. http://www.opengroup.org/onlinepubs/009695399/fun-
ctions/sin.html.

18. Lefevre, V., Muller, J.-M., and Tisserand, A., Toward
Correctly Rounded Transcendentals, IEEE Trans. Com-
put., 1987, vol. 47, no. 11, pp. 1235–1243.

19. Lefevre, V., Muller, J.-M., and Tisserand, A., The Table
Maker’s Dilemma, INRIA Research Report, 1998,
no. 98-12.

20. Lefevre, V. and Muller, J.-M., Worst Cases for Correct
Rounding of the Elementary Functions in Double Preci-
sion, in Proc. 15th Symp. on Computer Arithmetic, Vail
(Colorado), 2001.

21. Lang, S., Algebra, Reading: Addison–Wesley, 1965.
Translated under the title Algebra, Moscow: Mir, 1968.

22. Abramowitz, M. and Stegun, I.A., Handbook of Mathe-
matical Functions with Formulas, Graphs, and Mathe-
matical Tables, New York: Dover, 1965. Translated
under the title Spravochnik po spetsiak’nym funktsiyam
s formulami, grafikami i matemeticheskimi tablitsami,
Moscow: Nauka, 1979.

23. Muller, J.-M., Elementary Functions: Algorithms and
Implementation, Boston: Birkhauser, 2006, 2nd ed.

24. http://www.math.utah.edu/~beebe/software/ieee/.
25. http://www.redhat.com/drepper/libm/.
26. Kahan, W., What Can You Learn about Floating-Point

Arithmetic in One Hour? http://http.cs.berkeley.edu/~wka-
han/ieee754status, 1996.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 3 2007

STANDARDIZATION AND TESTING OF IMPLEMENTATIONS 173

27. Schryer, N.L., A Test of Computer’s Floating-Point
Arithmetic Unit, Computer Science Technical Report,
AT&T Bell Labs, 1981.

28. Verdonk, B., Cuyt, A., and Verschaeren, D.A., A Preci-
sion- and Range-Independent Tool for Testing Floating-
Point Arithmetic I: Basic Operations, Square Roots and
Remainder, ACM TOMS, 2001, vol. 27, no. 1, pp. 92–
118.

29. Verdonk, B., Cuyt, A., and Verschaeren, D.A., A Preci-
sion- and Range-Independent Tool for Testing Floating-
Point Arithmetic II: Conversions, ACM TOMS, 2001,
vol. 27, no. 1, pp. 119–140.

30. http://www.cant.ua.ac.be/ieeecc754.html.
31. Karpinski, R. PARANOIA: A Floating-Point Bench-

mark, Byte Magazine, 1985, vol. 10, no. 2, pp. 223–235.
32. http://www.netlib.org/paranoia/.
33. Ziv, A., Aharoni, M., and Asaf, S., Solving Range Con-

straints for Binary Floating-Point Instructions, in Proc.
16th Symp. on Computer Arithmetic (ARITH-16'03),
2003, pp. 158–163.

34. Aharoni, M., Asaf, S., Fournier, L., Koifman, A., and
Nagel, R., FPgen—A Test Generation Framework for
Datapath Floating-Point Verification, in Proc. IEEE Int.
High Level Design Validation and Test Workshop
(HLDVT'03), 2003, pp. 17–22.

35. http://www.math.utah.edu/pub/elefunt/.
36. http://www.netlib.org/fp/ucbtest.tgz.
37. Liu, Z.A., Berkley Elementary Function Test Suite, M.S.

thesis, Berkley: Computer Science Division, Department
of Electrical Engineering and Computer Science, Univ.
of California at Berkley, 1987.

38. Stehele, D., Lefevre, V., and Zimmermann, P., Searching
Worst Cases of a One-Variable Function Using Lattice
Reduction, IEEE Trans. Comput., 2005, vol. 54, no. 3,
pp. 340–346.

39. http://www.loria.fr/zimmerma/mpcheck/.
40. http://www.maplesoft.com/.
41. http://www.wolfram.com/products/mathematica/in-

dex.html.
42. http://www.mathworks.com/products/matlab/.
43. Ziv, A., Fast Evaluation of Elementary Mathematical

Functions with Correctly Rounded Last Bit, ACM Trans.
Math. Software, 1991, vol. 17, no. 3, pp. 410–423.

44. IBM Accurate Portable MathLib, http://rpmfind.net/li-
nux/rpm2html/search.php?query=lib-ultim.so.2.

45. http://www.mpfr.org/.

46. http://www.sun.com/download/prod-
ucts.xml?id=41797765.

47. http://www.ens-lyon.fr/LIP/Arenaire/Ware/SCSLib/.

48. http://lipforge.ens-lyon.fr/projects/crlibm/.

49. de Dinechin, F., Ershov, A., and Gast, N., Towards the
Post-Ultimate libm, in Proc. 17th Symp. on Computer
Arithmetic, IEEE Computer Society, 2005.

50. Defour, D., de Dinechin, F., and Muller, J.-M., Correctly
Rounded Exponential Function in Double Precision
Arithmetic, INRIA Research Report, RR-2001-26, 2001.

51. de Dinechin, F., Lauter, C., and Muller, J.-M., Fast and
Correctly Rounded Logarithms in Double Precision,
INRIA Research Report, RR-2005-37, 2005.

52. Chevillard, S. and Revol, N., Computation of the Error
Functions erf and erfc in Arbitrary Precision with Cor-
rect Rounding, in Proc. 17th IMACS Conf. on Scientific
Computation, Applied Mathematics, and Simulation,
Paris, 2005.

53. Kramer, W., Multiple-Precision Computations with
Result Verification, in Scientific Computing with Auto-
matic Result Verification, Adams, E. and Kulisch, U.,
Eds., Boston: Academic, 1993, pp. 325–356.

54. Schulte, M.J. and Swartzlander, E.E., Software and
Hardware Techniques for Accurate, Self-Validating
Arithmetic, in Applications of Interval Computations,
1996, pp. 381–404.

55. Revol, N. and Rouillier, F., Motivations for an Arbitrary
Precision Interval Arithmetic and the MPFI Library,
Reliable Comput., 2005, vol. 11, no. 4, pp. 275–290.

56. MPFI Library, http://perdo.ens-lyon.fr/nathalie.re-
vol/mpfi_toc.html.

57. Kahan, W., Minimizing q ∗ m – n, available at
http://http.cs.berkley.edu/~wkahan/testpi/nearpi.c.

58. Kuliamin, V.V., Formal Approaches to Testing Mathe-
matical Functions, in Trudy ISP RAN, 2006, vol. 10.

59. http://sourceware.org/cgi-bin/cvsweb.cgi/libc/sysdeps/
i386/fpu/e_expl.c?cvsroot=glibc.

SPELL: 1. semiperimeter

