
Standardization and Testing of Mathematical
Functions

Victor Kuliamin

Institute for System Programming
Russian Academy of Sciences

109004, Solzhenitsina, 25, Moscow, Russia
kuliamin@ispras.ru

Abstract. The article concerns problems of formulating standard re-
quirements to implementations of mathematical functions working with
floating-point numbers and conformance test development for them. In-
consistency and incompleteness of available standards in the domain is
demonstrated. Correct rounding requirement is suggested to guarantee
preservation of all important properties of functions and to support high
level of interoperability between different mathematical libraries and
software using them. Conformance test construction method is proposed
based on different sources of test data: numbers satisfying specific pat-
terns, boundaries of intervals of uniform function behavior, and points
where correct rounding needs much higher precision than in average.
Analysis of test results obtained on various implementations of POSIX
mathematical library is also presented.

1 Introduction

Computers now are widely used in physics, chemistry, biology, social sciences to
model and understand behavior of very complex systems, which can hardly be
examined in any other way. Confirmation of such models’ correctness by experi-
ments is too expensive and often even impossible. To ensure accurateness of this
modeling we need to have adequate models and correctly working modeling sys-
tems. The article is concerned with the second problem – how to ensure correct
operation of modeling systems. Such systems are often based on very sophisti-
cated and peculiar numeric algorithms, and in any case they use mathematical
functions implemented in software libraries or in hardware.

Thus mathematical libraries are common components of most simulation
software and correct operation of the latter cannot be achieved without correct
implementation of basic functions by the former. In practice software quality is
controlled and assured mostly with the help of testing, but testing of mathe-
matical libraries often uses simplistic ad hoc approaches and random test data
generation. Specifics of floating-point calculations make construction of both
correct and efficient implementations of functions along with their testing a
nontrivial task. This paper proposes an approach for standardization of floating-
point calculations beyond the bounds of IEEE 754 standard [1] and presents a



systematic method of conformance test construction for mathematical functions
implemented in software or hardware.

The core of the standardization proposed is correct rounding requirement. It
means that an implementation of a function is always required to provide results,
which are mathematically precise values correctly rounded to floating-point (FP)
numbers according to the current rounding mode. Obeying such a requirement
gives an easy way to preserve almost all useful properties of a function im-
plemented, and, more important, it provides an unprecedented interoperability
between various mathematical libraries and modeling software using them. Now
this interoperability is far from the high level.

The test construction method presented checks correct rounding requirement
and uses three different sources of test data – floating-point numbers of specific
structure, boundaries of intervals where the function under test behaves in uni-
form way, and floating-point numbers, for which correct rounding of the function
value requires much higher precision of calculations than in average. All these
sources are concerned with common errors made by developers of mathematical
libraries, which is confirmed both by the practical experience and by the results
of tests developed according to this method also presented in the paper.

The main contribution of this article in comparison with [2] and [3] is precise
formulation of requirements proposed for standardization and the presentation
of considerable testing statistics, which demonstrates rather high error rate of
commonly used implementations of mathematical functions and confirms the
practical adequacy of the test construction approach proposed.

2 Current Standards’ Requirements

Practically significant requirements on the behavior of functions on FP numbers
can be found in several standards.

– IEEE 754 [1] (a.k.a IEC 60559) defines representation of FP numbers, round-
ing modes and describes basic arithmetic operations.

– ISO C [4] and POSIX [5] impose additional requirements on about 40 func-
tions of real and complex variable implemented in standard C library.

– ISO/IEC 10697-2 [6] gives more elaborated requirements for elementary
functions.

2.1 Floating-point Numbers

Standard IEEE 754 defines FP numbers based on various radices. Further only
binary numbers are considered, since other radices are used in practice rarely.
Nevertheless, all the techniques presented can be extended to FP numbers with
different radices.

Representation of binary FP numbers is defined by two main parameters –
n, the number of bits in the representation, and k < n, the number of bits used
to represent an exponent. The interpretation of different bits is presented below.



– The first bit represents the sign of a number.
– The next k bits – from the 2-nd to the k + 1−th – represent the exponent of

a number.
– All the rest bits – from k + 2−th to n−th – represent the mantissa or the

significand of a number.

A number X with the sign bit S, the exponent E, and the mantissa M is ex-
pressed in the following way.

1. If E > 0 and E < 2k − 1 then X is called normalized and is calculated
with the formula X = (−1)S2(E−2k−1+1)(1 + M/2n−k−1). Actual exponent
is shifted to make possible representation of both large and small numbers.
The last part of the formula is simply 1 followed by point and mantissa bits
as the binary representation of X without exponent.

2. If E = 0 then X is called denormalized and is computed using another
formula X = (−1)S2(−2k−1+2)(M/2n−k−1). Here mantissa bits follow 0 and
the point. Note that this gives two zero values +0 and −0.

3. Exponent 2k − 1 is used to represent positive and negative infinities (zero
mantissa) and not-a-number NaN (any nonzero mantissa). Infinities repre-
sent mathematically infinite values or numbers greater or equal to 22k−1

.
NaN represents results of operations that cannot be considered consistently
as finite or infinite, e.g. 0/0 = NaN.

IEEE 754 standard defines the following FP number formats: single precision
(n = 32 and k = 8), double precision (n = 64 and k = 11), and extended double
precision (128 ≥ n ≥ 79 and k ≥ 15 (Intel processors use n = 79 and k = 15). In
the current (2008) version of the standard quadruple precision numbers (n = 128
and k = 15) are added.

2.2 IEEE 754 Requirements

IEEE 754 defines requirements to basic arithmetic operations on them (addition,
subtraction, multiplication, and division, fused multiplication-addition x∗y+z),
comparisons, conversions between different formats, square root function, and
calculation of FP remainder [7]. Since results of these operations applied to FP
numbers are often not exact FP numbers, it defines rules of rounding such results.
Four rounding modes are defined: to the nearest FP number, up (to the least
FP number greater than the result), down (to the greatest FP number less than
the result), and to 0 (up for negative results and down for positive ones). If the
result is exactly in the middle between two neighbor FP numbers, its rounding
to nearest get the one having 0 as the last bit of its mantissa.

To make imprecise and incorrect results more visible IEEE 754 defines a set
of FP exception flags.

– Invalid flag should be raised if the result is NaN, while arguments of the
operation performed are not NaNs. In addition NaNs are separated in two
classes – signaling NaNs and quiet NaNs. NaN result of an operation on



not-NaN arguments is signaling one. If any of arguments of an operation
is signaling NaN, then invalid flag is raised. Quiet NaNs can be used as
arguments without raising invalid flag with quiet NaN as the result.

– Divide-by-zero flag should be raised if the result is exactly positive or nega-
tive infinity, while arguments are finite.

– Overflow flag should be raised if the result absolute value is greater than
maximum FP number.

– Underflow flag should be raised if the result is not 0, while its absolute value
is less than minimum positive normalized FP number.

– Inexact flag should be raised if the precise result is no FP number, but no
overflow or underflow occurs.

2.3 Requirements of ISO C and POSIX

ISO C [4] and POSIX [5] standards provide description of mathematical functions
of standard C library, including most important elementary functions (square
and cubic roots, power, exponential and logarithm with bases e, 2 and 10, most
commonly used trigonometric, hyperbolic and their reverse functions) of real or
complex variables. Some special functions are added – error function, comple-
mentary error function, gamma function, and logarithmic gamma function.

ISO C standard defines points where the specified functions have exact well-
known values, e.g. log 1 = sinh 0 = 0, cos 0 = 1. It also specifies situations where
invalid and divide-by-zero flags should be raised, the first one – if a function
is calculated outside of its domain, the second one – if the value of a function
is precisely positive or negative infinity. These requirements are specified as
normative for real functions and as informative for the complex ones.

POSIX slightly extends the set of described functions; it adds Bessel functions
of the first and the second kind of orders 0, 1, and of an arbitrary integer order
given as the second parameter. It also extends ISO C by specifying situations
when overflow and underflow flags should be raised for functions in real variables.
POSIX specifies that value of errno should be set to ERANGE if overflow or
underflow occurs or if the result is precise infinity, and errno should be set to
EDOM if the arguments are out of the domain of a function, excluding arguments
for which it returns signed infinite results.

POSIX requires that real functions having asymptotic f(x) ∼ x near 0 should
return x for each denormalized argument value x. Note, that this would be
inconsistent with IEEE 754 rounding requirements if they were applied to such
functions.

One more contradiction between POSIX and natural extension of IEEE 754
concerns overflow. IEEE 754 in this case requires to take rounding mode in
account – e.g. to return positive infinity for to nearest and up rounding modes
and the biggest positive finite FP number for to 0 or down modes. POSIX
requires returning in any case one value BIG VALUE.

Both ISO C and POSIX do not say anything on precision of function calcu-
lation in general situation.



2.4 Requirements of ISO 10697

The only standard specifying some calculation precision for rich set of mathemat-
ical functions is ISO 10697 [6], standard on language independent arithmetic. It
provides the following requirements to implementations of elementary functions.

– Preservation of sign and monotonicity of ideal mathematical function where
no frequent oscillation occurs. Frequent oscillation occurs where difference
between two neighbor FP numbers is comparable with length of intervals
of monotonicity or sign preservation. Trigonometric functions are the only
elementary functions that oscillate frequently on some intervals.

– Rounding errors should not be greater than 0.5− 2.0 unit of least precision
(ulp), depending on the function. Again, this is not applied to implementa-
tions of trigonometric functions on arguments greater than some big angle.
Note that precision 0.5 ulp is equivalent to the correct rounding to the near-
est FP number.

– Preservation of evenness or oddity of implemented functions. For this reason
the standard does not support directed rounding modes – up and down.
Only symmetric modes – to nearest and to zero – are considered.

– Well-known exact values for functions are specified, extending ISO C require-
ments. In addition it requires to preserve asymptotic of the implemented
function in 0 or near infinity.

– Natural inequalities (e.g. cosh(x) ≥ sinh(x)) should also be preserved.

ISO 10697 provides the most detailed set of requirements including precision
requirements. Unfortunately, it has not yet recognized by applied programmers
and no widely-used library has declared compliance with this standard. Maybe
this situation will improve in future.

3 Correct Rounding Requirement

Analysis of existing standards shows that they are not fully consistent with each
other and are usually restricted to some specific set of functions. Trying to con-
struct some systematic description of general requirements based on significant
properties of mathematical functions concerned with their computation one can
get the following list.

– Exact values and asymptotic near them.
– Preservation of sign, monotonicity, and inequalities with other functions.
– Symmetries – evenness, oddity, periodicity, or more complex properties like

Γ (x + 1) = xΓ (x).
– NaN results outside of function’s domain, infinity results in function’s poles,

correct overflow and underflow detection, raising correct exception flags.
– Preservation of bounds of function range, e.g. −π/2 ≤ arctan(x) ≤ π/2.
– Correct rounding according to natural extension of IEEE 754 rules and rais-

ing inexact flag on imprecise results.



Correct rounding requirement here is of particular significance.

– It immediately implies almost all other properties in this list. If we want
to preserve these properties without correct rounding, much harder work is
required, peculiar errors become possible, and thorough testing of such an
implementation becomes much harder task.

– It provides results closest to the precise ones. Without correct rounding it is
necessary to specify how the results may differ from the precise ones, which
is hard and very rarely done in practice. It is supposed usually that correct
rounding for sine function on large arguments is too expensive, but none of
widely used sine implementations (except for Microsoft’s one [9]) explicitly
declares its error bounds on various intervals. Users usually don’t analyze
the results obtained from standard mathematical libraries, and are not com-
petent enough to see the boundaries between areas where their results are
relevant and the ones where they become irrelevant due to (not stated explic-
itly) calculating errors in standard functions. Correct rounding moves most
of the problems of error analysis to the algorithms used by the applications,
standard libraries become as precise as it is possible.

– Correct rounding implies almost perfect compatibility of different mathe-
matical libraries and precise repeatability of calculation results of modeling
software on different platforms, which means very good portability of such
applications. This goal is rather hard to achieve without such a requirement
– one needs to standardize specific algorithms as it was made by Sun in
mathematical library of Java 2. Note that strict precision specification is
much more flexible requirement than standardization of algorithms.

High efforts required to develop a function implementation and its resulting
ineffectiveness are always mentioned as drawbacks of correct rounding. However,
efficient algorithms and resolving techniques are already known for a long time
(e.g. see [10, 11] for correct argument reduction for trigonometric functions).
Work of Arenaire group [12] in INRIA on crlibm [13, 14] library demonstrates
that inefficiency problems can be resolved in almost all cases. So, now these
drawbacks of correct rounding can be considered as not really relevant.

More serious issues are contradictions between correct rounding requirement
and some other useful properties of mathematical functions. In each case of such
a contradiction we should decide how to resolve it.

– Correct rounding can sometimes contradict with boundaries of function
range, if they are not precise FP numbers. For example, arctan(x) ≤ π/2 is
an important property. It occurs that single precision FP number closest to
π/2 is greater than it, so if we round arctangent values on large arguments to
the nearest FP number, we get arctan(x) > π/2, that can radically change
the results of modeling of some complex systems. In this case we prefer to
give priority to the bounds preservation requirement and do not round values
of arctangent (with either rounding mode) to FP numbers out of its range.

– Oddity and some other symmetries using minus sign or taking reciprocal
values can be broken by directed rounding modes (up and down), while



symmetric modes (to nearest and to 0) preserve them. In this case it is
natural to prefer correct directed rounding if it is chosen, because usually
such modes are used to get correct boundaries on exact results.

– Correct rounding for different modes contradicts with two POSIX require-
ments – that some BIG VALUE should be always returned in case of over-
flow, and that a function close to x near 0 should return the value of its
argument for denormalized arguments. In both cases correct rounding seems
to be more justified.

So, we propose to make correct rounding according to the current rounding
mode the main requirement for standardization of any kind of functions working
with FP numbers. The single exception is more privileged range preservation
requirement in cases where it comes to contradiction with correct rounding. In
all other cases correct rounding is sufficient to infer all the properties of an
implementation.

In case of overflow a function should return the corresponding infinity for
rounding to the nearest and in the direction of the overflow. For rounding in the
opposite direction and to 0 maximum positive or negative FP number should be
returned. On the arguments outside function’s domain it should return signaling
NaN, or signed infinity if the sign can be naturally determined by mathematical
properties of this function. On infinite arguments a function should return the
corresponding limit value, if it has any one, otherwise signaling NaN should be
returned. If any of the arguments is signaling NaN, the result should also be
signaling NaN. If any of the arguments is quiet NaN and there are no signaling
NaNs among them, the result should be quiet NaN.

These requirements should be supplemented with IEEE 754 exception flags
raising and setting errno to specific values in the corresponding specific situa-
tions (see above).

Further we consider test construction to check correct rounding requirement
with 4 rounding modes specified by IEEE 754. We also demonstrate that such
tests are useful and informative even for implementations that do not satisfy
these requirements.

3.1 Table Maker Dilemma

An important issue related with correct rounding requirement is table maker
dilemma [15, 16]. It consists in the fact that sometimes one needs much higher
precision of calculations to get correctly rounded value of a function than in
average. An example is the value of natural logarithm of a double precision
FP number 1.613955DC802F816 ·2−35 (mantissa is represented in hexadecimals)
equal to −17.F02F9BAF6035 7F149. . .16 . Here F14 means 14 digits F, giving
with neighbor digits 60 consecutive units staying after a zero just after the
double precision mantissa. This value is very close to the mean of two neighbor
FP numbers, and to be able to round it correctly to the nearest FP number we
need calculations with relative error bound about 2−113 while 0.5 ulp precision
corresponds to only 2−53 bound.



4 Test Construction Method

Test construction method proposed checks difference between correctly rounded
value of a function and the value returned by its implementation in a set of test
points. We prefer to have test point selection rules based only on the properties
of the function under test and structure of FP numbers, and do not consider spe-
cific implementation algorithms. This black box approach appears to be rather
effective in revealing errors in practice, and at the same time it does not require
detailed analysis of numerous and ever growing set of possible implementation
algorithms and various errors that can be made in them.

Test points are chosen by the following rules (see more details in [3]).

1. FP numbers of special structure.
First, natural boundary FP numbers are taken as test points: 0,−0,∞,−∞,
NaN, the least and the greatest positive and negative denormalized and
normalized numbers.
Second, numbers with mantissa satisfying some specific patterns are chosen.
Errors in an algorithm or an implementation often lead to incorrect calcu-
lations on some patterns. The notorious Pentium division bug [17] can be
detected only on divisors having units as mantissa bits from 5-th to 10-th.
Pattern use for testing FP calculations in hardware is already described, e.g.
in [18].
Third, two previous rules are used to get points where reverse function is
calculated and pairs of closest FP numbers to its values are taken as test
arguments for direct function. So, a function is tested in points satisfying
some patterns, and in points where its value is closest to the same patterns.

2. Boundaries of intervals of specific function behavior.
All singularities of the function under test, bounds of intervals of its non-
overflow behavior, of constant sign, of monotonicity or simple asymptotic
determine some partitioning of FP numbers. Boundaries of these intervals
and several points on each of them are chosen as test points.

3. FP numbers, for which calculation of correctly rounded function
value requires higher precision.
Bad cases, which require more than M additional bits for correct rounding
(the ”badness”), are taken as test points. Two values of M are used: n−k−10
for the worst cases and (n− k)/2, because some errors can be uncovered in
not-very-bad cases. This rule adds test points helping to reveal calculation
errors and inaccuracies of various nature.

Implementation of the method is rather straightforward. Test points are gath-
ered into text files, each test point is accompanied with correctly rounded value
of the function under test for each rounding mode (only two different values
are required at most). Correctly rounded values are calculated with the help of
multiprecision implementations of the same functions taking higher precision to
guarantee correct results and using both Maple and MPFR library [19] to double
check the correctness. A test program reads test data, calls the function under
test, and compares its result with the correct one. In case of discrepancy the



difference in ulps is counted and reported. In addition the test program checks
exception flags raising according to IEEE 754 rules extended to the function
under test. Test execution is completely automated.

The hard step of the approach is to compute bad cases. Methods to do this
include search based techniques, dyadic method, lattice reduction, and integer
secants method (see details in [3]). They do not solve the problem completely,
but help to deal with it in many particular cases.

5 Test Results Analysis

The test construction method presented above has been applied to make test
suites for POSIX functions exp, expm1, log, log10, log1b, sin, asin, cos,
acos, tan, atan, sinh, asinh, cosh, acosh, tanh, atanh in double precision.
The tests have been executed on the following platforms.

– Platform A – Sun Solaris 10 on UltraSpark III processor.
– Platform B – SUSE Linux Enterprise Server (SLES) 10.0 with glibc 2.4 or

Debian Linux 4.0 with glibc 2.3.6 on Intel Itanium 2 processor.
– Platform C – Red Hat Fedore Core 6 with glibc 2.5 or Debian Linux 4.0

with glibc 2.7 on Intel Pentium 4.
– Platform D – Windows XP operating system with Microsoft Visual Studio

2005 C runtime library on Intel Pentium 4 processor.
– Platform E – Red Hat Enterprise Linux 4.0 with glibc 2.3.4 on Intel Pentium

4 or AMD Athlon 64 processors.
– Platform F – Debian Linux 4.0 with glibc 2.7 on 64-bit PowerPC processor.
– Platform G – SLES 10.0 with glibc 2.4 on IBM s390 processor.
– Platform H – SLES 10.0 with glibc 2.3.5 on 32-bit PowerPC processor.

Platforms E-H being different in minor details are very similar in general
picture and demonstrate almost the same numbers of similar errors, so they
seem to have almost identical implementations of glibc math functions (and
actually identical results are demonstrated by platforms F and G for atan,
asinh, atanh, expm1, log1p, log, log10 and by platforms E and H for atan,
log, log10). Other platforms show more differences and specific errors.

Func. Platf. Rounding Argument Value

exp E down, to 0 -1.02338886743052249 1.12533187332226478e+307
exp F up 7.07297806243595915e+2 -5.62769256250533586e+306
exp H up -6.59559560885092266e-1 1.00194134452638006
cosh G up 7.09150193027364367e+2 -2.35289304846008447e+307
sinh E down 6.68578051047927488e+2 -5.48845314236507489e+288
sin H up 3.36313335479954389e+1 7.99995094799809616e+22
cos F down, to 0 1.62241253252029984e+22 -1.19726021840874908e+52
sin D all -1.79346314152566190e-76 9.80171403295605760e-2

Table 1. Examples of errors found.

The following errors and “features” were detected.



– The most serious bug is numerous and huge calculation errors in implementa-
tions of sin, cos, tan, exp, sinh, cosh on many platforms. Only platforms
A and B implement trigonometric functions without serious errors (with only
1-bit or 2-bit errors). Exponential function and hyperbolic sine and cosine
are implemented without big errors on platforms A-D. The salient fact is
that on the platforms E-H all these functions work almost correctly for the
rounding to nearest (only few 1-bit errors were detected for trigonometric
functions, 2-bit ones for hyperbolic functions, and no calculation errors were
found for exp), but for other rounding modes almost arbitrary inaccuracies
are possible. Examples are given in Table 1.
Implementations of trigonometric functions on platforms C and D, although
erroneous, have imprecise argument reduction [10] as the main source of
errors, so they show smooth increase of inaccuracies from 0 to infinities,
independently of rounding modes.

– Sine is implementated with errors in the interval (−0.1,−10−76) on platform
D. An example is shown in the last row of Table 1. This error is hard to
show due to compiler-implemented transformation sin(−x) = − sin(x). To
overcome it test data should be generated or loaded dynamically, so that the
compiler cannot notice that they are negative numbers.

– The platform B is the only one which preserves oddity or evenness of all
the functions tested. cosh is implemented as an even function on all the
platforms except for D. atan, cos, sin, tan also preserve their symmetry
on the platform C, asin – on the platform D. In all other cases the symmetry
is somehow broken.

– Arctangent function for large arguments calculated with up rounding returns
the result greater than π/2 on the platforms A, B, and C.

– Platform C shows big calculation errors in acos for rounding up, tanh for
rounding down, expm1 for rounding up and down. Also acos(−1) = −π
instead of π for rounding up.

– On platform A functions asin, acos, log, log10 return not-NaN FP number
instead of NaN for arguments out of function domain.

– Finite number (actually maximum float value) is returned instead of infinity
in case of overflow for exp, cosh, sinh and in 0 for log, log10 on platform
A. Maximum finite double value is returned instead of infinity for exp, cosh,
sinh on platform D. These bugs may be related with POSIX requirement
to return some BIG VALUE in case of overflow independently of rounding
mode. This requirement (with BIG VALUE equal to infinity) is implemented
on all platforms except for A and D for exp, on platforms B, E, H for cosh,
on platforms E, H for expm1, and only on the platform B for sinh.

– On all platforms, except for B, functions that are equivalent to x near 0 “try”
to return the argument value for denormal arguments for all rounding modes.
That is, POSIX requirement is implemented on most platforms in most cases.
However, this requirement is implemented only for positive denormals for
asin, tanh and atanh on the platform C and for tanh on the platform G.
Platform B implements correct rounding requirement.



– A lot of minor calculation errors were detected. The best accuracy is demon-
strated by platform B – maximum errors are only 2-bit and such errors are
rather rare, the worst results are shown by atan, for which 10% of test points
discovered such errors. Platform A shows maximum 3-bit difference from
correct results. Sometimes such errors are very often, for example, 99.8%
of test points discovered 1-bit errors in acos implementation on platform
D for rounding up. In some cases probable mistakes in table values used in
implementations are uncovered, for example,
• On platforms E-H atan has erroneous 7 last bits of mantissa for rounding

up, down or to 0 near -6.25.
• On platform C sinh value for rounding up has erroneous 15 last bits

near 1.986821485e-8.
• On platform D exp value has 6 erroneous last bits near -2.56e-9.

– Some errors detected concern incorrect flag (not-)raising and incorrect errno
values. For example, for almost all implementations of functions that are
equivalent to argument near 0 UNDERFLOW flag and ERANGE errno
value are not set for denormal arguments. For atanh in 1 or −1 errno value
in all implementations is set to domain error, not to range error as it is
required by POSIX.

The main result is that tests based on structure of FP numbers and intervals
of uniform behavior of the function under test are very good for finding various
errors related with mistakes made by programmers, while bad cases for correct
rounding help to assess calculation errors in whole and general distribution of
inaccuracies.

6 Conclusion

The approach presented in the paper helps to formulate consistent require-
ments and construct corresponding conformance test suites for floating-point
implementations of various mathematical functions in one real variable. Error-
revealing power of such test suites is rather high – many errors were found in
mature and widely used libraries. Although test suites are intended to check
correct rounding requirement, they also give important information about im-
plementations that do not obey this restriction.

Some further research is needed to formulate heuristics or rules that help to
make test suites more compact. Now they consists of about 2 · 106 test points
and require sometimes several hours to execute. The experiments conducted
demonstrated that for exponential function the test suite constructed using the
method described and consisting of about 3.7 · 106 test cases, and the reduced
test suite of about 104 test cases detect all the same errors.

One idea to extend the method proposed for functions in two or more vari-
ables is rather straightforward – it is necessary to use not intervals, but areas
of uniform behavior of functions. But extension of rules concerning FP numbers
of special structure and bad cases seem to be much more peculiar, since their
straightforward generalizations gives huge number of tests without any hope



to get all the data in a reasonable time. So, some reduction rules should be
introduced here from the very beginning to obtain manageable test suites.

The standardization proposed and tests developed with the presented ap-
proach can facilitate and simplify construction of correct and portable mathe-
matical libraries giving more adequate and precise means for evaluation of their
correctness and interoperability.

References

1. IEEE 754-2008. IEEE Standard for Binary Floating-Point Arithmetic. NY, IEEE,
2008.

2. V. Kuliamin. Standardization and Testing of Implementations of Mathematical
Functions in Floating Point Numbers. Programming and Computer Software,
33(3):154-173, 2007.

3. V. Kuliamin. Test Construction for Mathematical Functions. In K. Suzuki, T. Hi-
gashino, A. Ulrich, T. Hasegawa, eds. Testing of Software and Communicating
Systems, LNCS 5047:23-37, Springer, 2008.

4. ISO/IEC 9899. Programming Languages - C. Geneve: ISO, 1999.
5. IEEE 1003.1-2004. Information Technology - Portable Operating System Interface

(POSIX). NY, IEEE, 2004.
6. ISO/IEC 10967-2. Information Technology - Language Independent Arithmetic -

Part 2: Elementary Numerical Functions. Geneve, ISO, 2002.
7. D. Goldberg. What Every Computer Scientist Should Know about Floating-Point

Arithmetic. ACM Computing Surveys, 23(1):5-48, 1991.
8. D. Defour, G. Hanrot, V. Lefevre, J.-M. Muller, N. Revol, and P. Zimmer-

mann. Proposal for a standardization of mathematical function implementation in
floating-point arithmetic. Numerical Algorithms, 37(1-4):367-375, December 2004.

9. http://msdn.microsoft.com/library/wkbss70y.aspx
10. K. C. Ng. Arguments Reduction for Huge Arguments: Good to the Last Bit. 1992.

Available as http://www.validlab.com/arg.pdf.
11. W. Kahan. Minimizing q ∗m− n. 1983. Unpublished, available as

http://http.cs.berkeley.edu/ ∼wkahan/testpi/nearpi.c.
12. http://www.inria.fr/recherche/equipes/

arenaire.en.html
13. F. de Dinechin, A. Ershov, and N. Gast. Towards the post-ultimate libm. Proc. of

17-th Symposium on Computer Arithmetic. IEEE Computer Society Press, June
2005.

14. http://lipforge.ens-lyon.fr/www/crlibm/
15. V. Lefèvre, J.-M. Muller, and A. Tisserand. The Table Maker’s Dilemma. INRIA

Research Report 98-12, 1998.
16. V. Lefèvre, J.-M. Muller. Worst Cases for Correct Rounding of the Elementary

Functions in Double Precision. Proc. of 15-th IEEE Symposium on Computer
Arithmetic, Vail, Colorado, USA, June 2001.

17. A. Edelman. The Mathematics of the Pentium Division Bug. SIAM Review,
39(1):54-67, March 1997.

18. A. Ziv, M. Aharoni, and S. Asaf. Solving Range Constraints for Binary Floating-
Point Instructions. Proc. of 16-th IEEE Symposium on Computer Arithmetic
(ARITH-16’03), pp. 158-163, 2003.

19. http://www.mpfr.org


