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Abstract. The article presents an approach to model based testing of
complex systems based on a generalization of finite state machines (FSM)
and input output state machines (IOSM). The approach presented is used
in the context of UniTesK specification based test development method.
The results of its practical applications are also discussed. Practical ex-
perience demonstrates the applicability of the approach for model based
testing of protocol implementations, distributed and concurrent systems,
and real-time systems. This work stems from ISPRAS results of academic
research and industrial application of formal techniques in verification
and testing [1].

1 Introduction

During last decades more and more processes in industry, individual and social
life fall under the influence of software. Software becomes more powerful, and the
more powerful it becomes the more assured should be its safety and correctness.
In this situation due to well-known human predisposition to errors various formal
methods of software verification and validation acquire great importance.
Model based testing use formal models of software requirements to facilitate
test development automation and is considered nowadays as one of the main in-
struments for software quality assurance. First approaches to model based test-
ing appeared at the very rise of computer science. The approach based on finite
state machines (FSMs) [2, 3] is one of the most widely used of them. FSMs serve
as a good modelling mechanism for a long time. But modern software systems
are often constructed from distributed, concurrently operating components with
intention to satisfy real-time constraints. They are more complex and require
more sophisticated modelling methods to capture their complexity and features
adequately. Various generalizations of FSM form the foundation of many modern
model based testing approaches, which are more suitable for modern software.
Often model based testing of real-time systems is based on so called timed
automata [4-6], an FSM generalization augmented with temporal attributes.
They are used successfully both in testing and model verification areas in re-
search projects. But they are rarely used to model real life systems in industrial



practice. One of the possible causes of this situation is the wide gap between
timed automata formalism and formalisms of programming languages used by
typical developers. The same gap is inherent to the approaches based on var-
ious kinds of temporal logics [7, 8], although some commercial tools based on
temporal logics are available (see [9]).

The other issue to be noticed is the usual separation of testing of event based
communication from testing of unit functionality. But in practice calculations
carried out in real-time systems should often be performed with timing restric-
tions taken into account.

We think that no model based testing approach exists that satisfies all the
requirements of real-time or concurrent system testing. So, we have to try some
combination of different approaches, which can be determined by three main
points.

— The formalism used for description of system behaviour correctness criteria.

— Models used for test goal description and for test sequence generation.

— Means for integrated description of timed and functional (concerning calcu-
lations) characteristics of system behaviour.

From the engineering point of view one more issue is important: how to in-
tegrate the formalisms used and traditional programming techniques? The good
solution of this problem implies that the resulting approach would be suitable
for typical software engineers and could be smoothly introduced into industrial
practice.

The approach proposed in this article is an extension of UniTesK test devel-
opment method [10] successfully used for functional testing of complex industrial
systems [11] on the base of formal specifications. UniTesK method is based on the
following combination of techniques for solution of the problems stated above.
Description of system behaviour, or behaviour model, is represented in the form
of preconditions and postconditions of target system interface operations and
interface data type invariants. The model used for test sequence generation is a
FSM in an implicit form (see [10] for details). Usually it can be obtained by ab-
straction of behaviour model, but sometimes may include some more implemen-
tation specifics. The notation used for model is an extension of the programming
language used in target system, and the problem of model and implementation
integration does not exist.

Thus, three of four questions stated are answered by UniTesK. The open
question — how to use this method for specification of timed constraints — is the
subject of this article. The general idea is to extend the widely used and effec-
tive formalism of FSMs with a minimal set of features to specify concurrency
and timed constraints. Asynchronous finite state machines (AFSMs) formally
defined in the next section are considered to be appropriate for this. Before
the definition we also give some background for introduction of new concepts.
The third section presents testing approach based on AFSM models and corre-
sponding modifications of UniTesK basic test architecture. Then, the conclusion
summarizes the main statements of the work and outlines the future research
topics. The appendix reports on some practical applications of the approach.



2 Asynchronous Finite State Machines

The classical approach for FSM based testing of software components can be
illustrated by the Fig. 1. The target component is considered as a system that
produces one reaction in response for one stimulus provided by the test. The
task of testing is to provide a representative collection of test stimuli and to
check the correctness of resulting reactions.

stimulus

. Target System
reaction

Fig. 1. Classical Model of Testing.

This approach works well for passive software components. It can also be
adapted for active components that produce reactions only in response for stim-
uli, give one reaction for one stimulus, and the next reaction of which depends
only on the sequence of stimuli obtained before.

But what if the target component can produce reactions without any stimuli
or can give a sequence of reactions in response for one stimulus? In this case
classical FSM model cannot adequately describe the target system behaviour
and we have to use more sophisticated approach.

Modern software systems are usually composed from distributed and con-
currently working components. Real-time software also is often designed as a
collaboration of units working in parallel to satisfy real-time constraints. The
testing process for such a unit can be illustrated by the picture on Fig. 2.

stimuli reactions
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Fig. 2. Modern Model of Testing.

The difference between these two models cannot be overcome by simple in-
terface transformation. The second model permits production of a sequence of
reactions in response for one stimulus, or in absence of any stimulus. Even more
complex is dependency of reaction sequence on all the history of interaction



between the system and its environment. This kind of behaviour cannot be
modelled by FSM in a straightforward way.

Asynchronous finite state machine (AFSM) A is a tuple (V,vg,1,e,0,T),
where

V is a finite set called the set of states of A.

— vg € V is called the initial state of A.

— I is a set called the input alphabet of A. Its elements are called input stimuli
of A, or, simply, stimuli.

— e ¢ I is called the empty stimulus. The set X = I U {e} is called extended
input alphabet of A.

— O is a set called the output alphabet of A. Its elements are called reactions
of A.

— T = RUSUE is a finite set called the set of transitions of A. Its parts have

the following meaning.

e R CV x X xV is the set of receiving transitions. Note, that receiv-
ing transition can be marked with stimulus from I and with the empty
stimulus e.

e SCV x O xV is the set of sending transitions.

o [ CV xV is the set of empty transitions.

We call a state v € V'

— terminal, if it has no outgoing transitions: v ¢ w1 (R) U m1(S) U mi(E). We
use here symbol 7; for standard projection m; : Ay X --- X A, — A;.

— sending, if it has only sending or empty outgoing transitions: v € m(S) U
7T1(E)\7T1(R>.

— receiving, if it has only receiving outgoing transitions: v € m1(R) \ m1(S) U
T (E)

— mized, if it has both receiving and sending or empty outgoing transitions:
v e m(R)N (m(S) Um(E)).

We consider only AFSMs without mized states. See the definition of AFSM
behaviour function at the end of this section and further discussion of possibility
of mixed states.

Fig. 3 demonstrates an example of AFSM. We use here widely used notation
representing stimulus a as 7a and reaction x as !x. The state 0 is its initial
state of the AFSM presented. This AFSM has six states, the input alphabet
{a, b}, and the output alphabet {z,y}. It also has 4 receiving transitions (one of
them is marked with the empty stimulus), 4 sending transitions, and one empty
transition. The state 5 is terminal.

We will show later that the behaviour of AFSM presented on Fig. 3 cannot
be adequately modelled with any FSM.

To describe how an AFSM A works we need to consider the input queue and
the output queue connected to it. Input queue contains a sequence of stimuli, each
of which belongs to extended input alphabet X of A. Output queue collects the
sequence of A reactions. Informally, A looks at the head stimulus x of its input



Fig. 3. Example of AFSM.

queue and tries to find a transition marked with this stimulus outgoing from its
current state. If it can do this, it performs one of such transitions and removes
the head stimulus from the input queue. If it cannot, possible reasons can be of
four kinds: (1) the current state is terminal and A stops its work; (2) the current
state is sending, so A chooses some transition marked with reaction or empty
transition and performs it; (3) the current state is receiving and x = e, then A
does not do anything, but = is removed from the input queue; (4) the current
state is receiving and x € I, then the error occurs and A cannot operate any
longer. The empty stimulus e is introduced to model the behaviour of a system
in the absence of any external stimulus, at least for some time.

A step of AFSM A in the state v € V for the first symbol z in its input
queue is defined as nondeterministic choice of one of the possible transitions,
and corresponding change of the input queue, the output queue, and the current
state of A. The set of possible transitions P is determined as follows.

— If v is terminal, P = (). The current state of A and states of its queues remain
unchanged.

— If v is sending, P = {t € SUE|m(t) = v}. If the transition ¢ chosen belongs
to E, the next state of A is mo(t) and its queues are left unchanged. If ¢ € S,
the next state is m3(t), the input queue is left unchanged, and the reaction
mo(t) is added to the output queue.

— If v is receiving and z € X, P = {t € R|m(t) = v A ma(t) = x}. If this set
is not empty, some ¢t € P is chosen, the next state of A is 73(t), the output
queue is left unchanged, and x is removed from the input queue. If P = ()
and x = e, the state of A and its output queue are left unchanged, and x
is removed form the input queue. If P = () and = # e, forbidden input error
occurs.

We consider execution of A for a sequence of stimuli put in its input queue.
Such sequence can be finite or infinite. We consider only infinite sequences,
because a finite sequence can be represented by the infinite one, obtained by
completing the first with infinite sequence of empty stimuli. An execution of
AFSM A for an infinite input sequence w is a sequence of steps of A, starting
from its initial state vy, while w in its input queue, and the output queue of A is
empty. An execution produces some sequence of reactions u, called the execution
result, in the output queue of A. An execution is legal, if it is infinite or ends in
a terminal state of A. Illegal execution ends with forbidden input error.



Input sequence w is called acceptable for an AFSM A, if all the executions
of A for w are legal. The behaviour function hy of A is the function defined on
the set of its acceptable input sequence. It maps such a sequence w into the set
of all possible execution results of A for w.

Having behaviour functions of AFSMs we can compare them. For example,
the behaviour of the AFSM on Fig. 3 cannot be modelled by any FSM, because
an FSM cannot produce in response for the input sequence aa the sequence zy*x
for any given natural number k.

We can also choose a subclass A of all AFSMs and consider behaviour func-
tions of AFSMs from A. In particular, we may allow mixed states in AFSM
and define its behaviour in such a state somehow. It is possible to demonstrate
(see [12]) that most of the natural ways to define such generalized AFSMs re-
sult in state machine classes having the same set of behaviour functions. That
is, for each ‘generalized AFSM’ we can construct the one satisfying the above
definition and having the same behaviour function. The only exception is input
output state machines [13,14], which are usually defined very similar to AFSM,
but has no empty stimulus. Their behaviour functions can be realized as be-
haviour functions of AFSMs, but there exists an AFSM that have behaviour
function different from behaviour function of any finite IOSM (see [12] for an
example). So, AFSMs present more general class of state machines.

It is easy to construct the AFSM having the same behaviour as a given FSM
has. To do so, it is sufficient to add one intermediate state for each FSM transition
and to separate each FSM transition into two ones. The first is receiving, marked
with the initial transition input stimulus and leads from the starting state of
the initial transition to the corresponding intermediate state, and the second
is sending and leads from the intermediate state to the end state of the initial
transition.

3 Conformance Testing based on AFSMs

Comparison of behaviour functions of AFSMs can be regarded as the essence of
testing based on AFSM models. We say that an AFSM B conforms to another
AFSM A if for each input sequence w acceptable for A hp(w) C ha(w). This
conformance relation is an analogue for reduction relation of FSMs [15].

Having an AFSM model of some software system we can pose a question
whether the system works in accordance with the model. It can be regarded as
a question on conformance of unknown AFSM, called the implementation under
test, which we can observe only through its behaviour on sequences of stimuli,
to the given one.

To answer this question with the help of testing we should impose some
restrictions on the implementation under test. In absence of any restrictions
for each given model and sequence of stimuli or even set of such sequences we
can construct an implementation that provides the same reactions as model in
response for all these sequences, but does not conform to the model. In general
case we face with the following problems.



— Nondeterminism of model. If behaviour function maps some input se-
quence into several reaction sequences, then in general we cannot obtain all
of them after any finite number of executions. Instead we should lay down
some hypothesis on the behaviour of target system. For example, we can
suppose that if it works correctly for one trial of given input sequence, it
does so for each trial of this sequence. Some approaches to testing based on
nondeterministic models use all results condition — after some bounded num-
ber of trials, we can obtain each possible output (see [16]). In an AFSM one
input sequence can map to infinite set of output ones, so all results condition
restricts the set of AFSM models we can use for testing.

— Infinity of behaviour function domain. Model behaviour function can
be defined for infinite set of input sequences. We cannot test all of them,
so we should define some coverage model — an equivalence on the behaviour
function domain — and suppose that if implementation works correctly for
one sequence from some equivalence class, then it does so for any one of the
same class.

— Infinity of input sequences. We define behaviour function on infinite se-
quences of stimuli. How can we check implementation work for some actually
infinite input (that does not end with a sequence of empty stimuli)? We do
not know general solution of this problem. Some particular solution can be
obtained by choice of actually finite (having only empty stimuli after some
step) representatives of coverage classes. Another way is to use for check
not only model behaviour function, but some additional predicates on possi-
ble serializations of stimuli and reactions, which can assign a verdict on the
correctness of output on some finite step.

— Reaction wait time. How long should we wait for reactions? This ques-
tion cannot be solved without restrictions on implementation size (number
of states and/or transitions) and introduction of some bound on implemen-
tation step execution time. Under those conditions we can calculate upper
bounds on reaction wait time.

— Empty stimulus simulation. Our empty stimulus is only an abstract rep-
resentative of active nature of implementation under test. How can we sim-
ulate its presence in input sequence? We do not have general answer. One
approach is to tap somehow input receipts in the implementation and to
trace them. We can do so for systems, which use special function to obtain
the status of input queue and for which this function can be substituted. For
other systems we can use a special class of models having time uniform be-
haviour. This means that their behaviour does not differ for input sequences,
which can be transformed to each other by insertion or removal of empty
stimuli. Actually, this class of models is equivalent to finite IOSMs (see [12]).
We can also use the stationary testing, which is possible when all coverage
classes can be represented by sequences without empty stimuli.

We consider testing based on AFSM models in the context of UniTesK tech-
nology [10]. This technology provides a full-scale process for test development



and testing based on formal specifications of target system behaviour. UniTesK
proposes to use two models in test development.

— The first one is the model of system behaviour represented in the form of pre-
and postconditions of interface operations and data type invariants. Speci-
fications are automatically transformed into oracles — programs that check
behaviour of the system under test against specifications. First, the oracle of
some target operation checks the precondition and returns precondition vio-
lation exception, if it fails. If it holds for the given arguments, the oracle calls
the target operation with these arguments. Then, on the base of the result
obtained, pre- and post-values of arguments and state variables, it checks
the postcondition. So, such an oracle can process any values of arguments
and can work with nondeterministic implementation.

— The second model is an FSM used for generation of test sequences. It is

called testing model. Testing model is usually (but not always) an abstrac-
tion of specifications (see [17] for theoretical background of testing model
construction). It is represented in the form of test scenario, which is an im-
plicit description of the FSM. It has no information on ends of transitions
and defines only the data structure of states and a rule of transition fir-
ing depending on state data. Test scenario can be developed manually or
semi-automatically on the base of behaviour specifications and functionality
coverage criterion chosen as a goal of the test.
During the test the generic FSM traversal mechanism uses scenario to gen-
erate an adaptive sequence of input stimuli. Each stimulus is converted into
its representation on behaviour model level, then with the help of adapters
it is converted into implementation representation, the system produces the
response on it, which should be converted back on the level of behaviour
model and checked by the appropriate oracle (see [10] for details).

The peculiarity of UniTesK is the implicit representation of state machine
model in test scenario. Test designer does not describe states and transitions
but specify only the structure of state data (what is to be regarded as state)
and input data iterators for each operation under test. The traversal mechanism
that uses such a representation should be able to produce a traversal of state
machine transitions without knowledge on their ends until their execution.

To use UniTesK for testing real-time and concurrent systems we use AFSM
models instead of FSM for test sequence generation and extend the specification
constructs. In addition to specifications of interface operations they may contain
asynchronous reaction specifications. Such a specification also has precondition,
saying in what model states this reaction is possible, and postcondition, say-
ing what the resulting state of corresponding transition is. Postconditions can
contain timing constraints.

Test suite architecture presented in [10] was also extended. To decide whether
the implementation reacts correctly on the input sequence applied we do the
following.

1. Collect all the reactions, maybe from several sources (implementation ports).
Thus, we know some partial order on reactions, but have no full order on



them. This partial order is defined for reactions coming to one port and
maybe with the help of timestamps on reactions. Note, that timestamps
should be used accurately. They often contain the time of reaction arrival,
not the time of its creation. So, in general reactions that arrive on different
ports within some short interval cannot be surely ordered.

2. Then, we find all possible serializations of stimuli sent and reactions obtained
and all possible sequences of intermediate states in the behaviour model. If
we cannot find any, then implementation does not conform to specifications.
If we find some, we can consider any of the resulting states as the hypothetic
next state of the system and continue the process.

To do this we add to the test suite architecture the component, which gener-
ates possible serializations of partially ordered reactions and stimuli. In addition
we need AFSM traversal algorithms, which can work with sets of hypothetic
current states, or we may use only models that can bring us only to single state
after any representative input sequence. In practice we managed to use the sec-
ond approach (see below the section on applications of AFSMs). The first one
is in active research.

4 Practical Applications of AFSMs

The approach to concurrent system testing based on AFSM in UniTesK frame-
work was successfully applied to testing an implementation of IPv6 protocol.
The CTesK tool based on C language extension was used in the project.

The system under test was represented by Microsoft Research implementa-
tion of Internet Protocol version 6 (IPv6), more precisely, version 1.4 of MSR
IPv6 for Microsoft Windows N'T/2000. The same test suite was also ported to
Windows XP and Windows CE 4.1. The main features tested are the following.

— Packet send and receive, including fragmentation and reassembly of large
packets.

— Control messages. As RFC 2463 [18] specifies, IPv6 used Internet Control
Messages Protocol version 6 (ICMPv6) to report errors encountered in pro-
cessing packets and to perform other functions, such as diagnostics. ICMPv6
must be fully implemented by every IPv6 node.

— Neighbour discovery (RFC 2461 [19]), including neighbour solicitation,
neighbour advertisement, router solicitation, router advertisements, and
redirect.

These features do not exhaust the functionality of IPv6. But their absence
or an error in implementation of any of them in the protocol on a node often
causes impossibility of normal node work in the IPv6 network.

The specifications were developed in the UniTesK-compliant specification ex-
tension of C language on the base of IPv6 specifications presented in RFC doc-
uments. The interface specified consists of a set of procedure and non-procedure
stimuli and two types of reactions: outgoing IPv6 packets and UDP messages



received in sockets. One additional reaction was introduced to specify timing
restrictions, namely, timeouts in neighbour discovery protocol.
The following defects were discovered.

— Some series of packets can cause reboot of the system. The error in packet
reassembly implementation causes in some cases fatal error in the operating
system core.

— A discrepancy between specifications of packet reassembly from fragments
and its implementation. This defect was classified as negligible, because it
occurs only under specific conditions and does not cause fatal consequences.

— A discrepancy between specification of ICMPv6 Echo function and its im-
plementation. RFC requires that all the responses on ICMPv6 Echo request
should be passed to the process initiated the request. MSR IPv6 implemen-
tation interface supports passing only of the first response.

The project demonstrated the capabilities of UniTesK approach extended
with AFSM models for specification and testing concurrency and real time con-
straints. The testing performed revealed several defects, while several projects
on MSR IPv6 testing carried out simultaneously do not report on their discovery
(see [20] for example). The project effort was about 10 man-months, which is
much less than the effort of implementation.

The project also revealed some disadvantages C language for representation
of abstract software properties specifications. The first is very low level of C
language, which hides the logic of abstract model, the second one is manual
memory management, which requires much work not related with the matter of
specification and test design.

For details see full project reports on [21].

The second project performed according to the method presented in this
article is testing of OPC RACE, a peer-to-peer messaging management systems
for Nortel Networks. During this project also several errors were found in the
implementation.

5 Conclusion

The UniTesK approach for model based testing tries to use notation and con-
cepts familiar for typical developer. This principle was accepted as a compromise
that facilitate introduction of formal methods into industrial processes. Some-
times it requires simplification or hiding of theoretical background and advanced
techniques used, sometimes forces to exclude promising sophisticated test de-
velopment techniques from consideration. It provides software engineers with
a model based testing technology of moderate complexity that do not require
special modelling languages. The article demonstrates the next step in the same
direction. The techniques for modelling of concurrency and timing characteristics
are represented in an environment familiar for industrial developers.
Introduction of AFSMs in the background of UniTesK technology does not
seem to make it much more complex, while gives a set of features especially use-
ful for testing of real-time and concurrent systems. On the base of experience of
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practical applications [21-23], we can say that the approach is quite effective for
specification and further conformance testing of protocol implementations, dis-
tributed and parallel systems, for testing both functionality and time constraints
of real-time systems.

The UniTesK technology is supported by a set of tools developed for different

target languages. We already include the support for AFSM based testing in
CTesK tool, working with an extension of C, and plan to do so for JQT and
NQT tools, working with Java and C# extensions correspondingly [24, 25].
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