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Abstract 
The article expounds the basic principles of UniTesK test development technology based on formal 
models of target software. The article also presents the experience of application of this technology 
to various types of software, describes the problems arising during transition of this technology and 
other technologies based on formal methods to the industry, and gives possible solutions of these 
problems. UniTesK technology was developed by RedVerst group [RedVerst] of ISP RAS on the 
base of rich experience obtained in testing and verification of complex industrial software. 
The article may be interested both for researchers in formal methods of software engineering and 
practitioners, who wish to know how can model based testing methods be applied to real-life large-
scale software. The readers of the second group are advised to look through the sections “Basic 
UniTesK Principles”, “UniTesK Test Development Process”, proceed to the section “Experience of 
UniTesK Applications”, and then read other sections, which they may be interested in. 

Introduction 
Nowadays the software systems developed in the industry are so huge and so complex that the 

need for industrially applicable systematic testing technologies has become evident. The 
technologies that can guarantee both the qualitative and systematic testing and the high automation 
of the test development are especially urgent. The conventional test development methods based on 
manual work cannot provide testing quality for modern complex systems. 

Testing automation is usually reduced to automatic test execution and test report generation. To 
automate test production and analysis of their results is much more difficult, because these tasks 
can be performed only on the base of requirements to the target software. However, the 
requirements are often represented informally or even exist only in the form of knowledge and 
experience of experts, analysts, and software designers. 

To involve informal requirements in automated test development they must be formalized to 
enable computer to process them. In other words, formal specifications of the target system must be 
developed. These specifications can be transformed automatically into programs that are able to 
check the software conformance to the requirements specified. 

Although test generation methods based on formal specifications or formal models are actively 
developed in the academic community, only several of these methods can be used in industrial 
software production. The main problem is that the industry needs technology rather than separate 
methods; i.e. it needs a system of methods to perform a set of interrelated tasks concerned with 
testing and test development; moreover, these methods must be supported by tools integrated into 
widely used development environments. 

The article describes UniTesK technology developed in ISP RAS on the base of experience of 
several projects in verification and testing of complex industrial software. It is intended to 
introduce advanced test development methods in the software industry. The technology considered 
can be used to produce tests on the base of functional requirements to the target software. 
Nonfunctional testing and test development problems are out of the scope of this article. 

The paper is organized as follows. The next section describes the principles of UniTesK 
technology starting form the general considerations and then presenting the details. The third 
section compares the technology with other model based test development with other approaches to 



model based test development. The fourth section briefly describes UniTesK case studies and the 
experience of technology transition to the industry. The conclusion considers the possible lines of 
future development. 

UniTesK Technology 

Basic UniTesK Principles 
A test development technology for general-purpose software becomes applicable in the industrial 

software development only if it has the following properties. First, all activities defined by the 
technology should be (if possible) supported by corresponding tools. Second, it must provide a 
wide variety of features so that it can be used for testing various software in different problem 
domains, developed using different architectures with the help of various technologies. Finally, it 
should be integrated with usual development processes; in particular, it must be based on widely 
used and simple concepts and notation, so that it does not require long and expensive training of 
personnel. 

The following solutions are suggested by UniTesK to ensure the properties states. 
1. To provide the maximum flexibility the universal test suite architecture was developed. It 

defines the set of test components with clear interfaces and functions, so that a great variety 
of tests for various programs can be implemented in this framework.  

2. To make test development as automated as possible all the information that can be provided 
only by the test developer is collected in a small number of components. The convenient 
notation is suggested to make possible short presentation of this information. All other test 
components are generated automatically form the ones mention above, or are used in all test 
in invariable form. In many cases all variable test components, except for specifications that 
define software correctness criteria, can be generated interactively on the base of user’s 
answers on a series of clear questions. 

3. The well-known Design by Contract approach [DBCA,DBCO,DBCE] is used to represent 
formal specifications. Program contracts consist of preconditions and postconditions of 
interface operations and data type invariants. On the one hand, program contracts are 
convenient for software developers since they are closely related to the architecture of the 
software; on the other hand, owing to their representation they stimulate efforts to formulate 
implementation-independent correctness criteria of the target system. The main advantage 
of program contracts is that they enable automatic construction of test oracles 
[Parnas,KVEST,ADLt] that check the conformance of the target system behavior to the 
specifications. Program contracts can be also used to create test coverage criteria, which are 
close to requirements coverage criteria, on the base of contract structure. 

4. It is practically impossible to provide a universal mechanism for construction of single test 
actions (e.g., calls of functions with various sets of parameters) such that this mechanism is 
efficient enough both in terms of testing time and resulting test coverage. However, it is 
relatively simple to construct an iterator that iterates through a large set of values of a 
certain type. Tools supporting UniTesK contain libraries of basic iterators providing values 
of simple types, which can be used to generate test actions themselves or can be assembled 
into more complex generators. To save testing time, test actions can be filtered to discard 
the actions that do not enhance the test coverage. Filters are generated automatically from 
test coverage criteria (see the item 6). 

5. To automatically construct sequences of test inputs, we model the system under test as a 
finite state machine (FSM). A test sequence is generated as a sequence of calls of target 
operations corresponding to a path in the state transition graph of the FSM; for example, it 
can be a transition tour on the FSM. Since the FSM model is used only to generate a test 
sequence rather than to verify the behavior of the target system, which is performed by 
oracles, the FSM does not need to be completely defined. It is sufficient to specify a way for 
identifying its states and a method for iterating through inputs depending on the current 



state. FSMs in such an implicit way can be conveniently represented in the form of test 
scenarios. Often, a test scenario can be generated automatically on the base of 
specifications of target operations, a method for iterating through their parameters, and a 
testing strategy. 

6. The testing strategy determines when the testing can be finished. UniTesK uses the level of 
test coverage achieved according to some coverage criterion. One can automatically 
construct several test coverage criteria from specifications developed in accordance with the 
UniTesK technology. The user can control these criteria or define custom test coverage 
criteria. 

7. To facilitate the integration with available software development processes, UniTesK can 
use extensions of widely used programming languages to represent specifications and test 
scenarios. Classical formal specification languages can be used as well. The representation 
based on extensions of programming languages is more clear to ordinary software 
developers; it makes it possible to reduce the training in the technology to one week. 
Immediately after training, a test developer can use UniTesK in practical work and produce 
useful results. In addition, the use of programming language extensions instead of a special 
language significantly facilitates the integration of the test and the target system, which is 
required for testing. Currently ISPRAS has developed UniTesK-compliant tools based on 
extensions of Java, C, and C#. 

8. Specifications in the form of program contracts can be used in UniTesK not only as 
insertions in the source code of the target system. They can be separated from the source 
code and used in the invariable form to test different implementations of the same 
functionality. Thus, they can be considered as a formalization of functional requirements for 
the software. To provide the binding between specifications and a particular 
implementation, special components called mediators are used. Mediators can perform 
fairly complicated transformations of interfaces. The use of mediators opens the following 
possibilities. 

• Specifications can be much more abstract than the implementation; thus, they can be 
closer to the natural representation of functional requirements. 

• Specifications remain the same for several versions of the target software. To revise 
a test suite for testing a new version in which only external interfaces have been 
changed and their functionality remained the same, only mediators should be 
modified. In many cases, such a modification can be automated. 

• An extensive reuse of specifications and tests becomes possible, which enhances the 
efficiency of effort involved in their development. 

When the UniTesK technology is used in a specific domain, often not all test construction 
techniques are required and not all components included in the universal test architecture should be 
constructed. Sometimes, the use of certain techniques is even impossible or requires too much 
effort. Nevertheless, specialized variants of the technology and supporting tools can be used. 

For example, when compiler optimization modules are tested, the development of a complete 
specification for the functionality of such a module is very difficult, if ever possible; it should 
describe the fact that the optimization of a program has been actually performed. At the same time, 
it is relatively simple to compare the performance and functionality of special-type test programs 
after compilation with and without optimization. It is sufficient to execute these programs on a 
finite set of input data, which yields a method for constructing oracles; this method is not as general 
as that described above, but sufficient for practical purposes [OPT]. 

Universal Test Suite Architecture 
The flexibility of a technology or tool, the possibility of their use in various situations and 

contexts is primarily determined by the underlying architecture. The test architecture used in 



UniTesK was designed on the base of the experience obtained by testing complex industrial 
software. This architecture is intended to solve the following two problems. 

♦ The construction of tests cannot be fully automated because only an expert can formulate the 
testing strategy and correctness criteria of the target software. Nevertheless, many things can be 
and should be automated. 

♦ The architecture must combine uniformity with the capability to test software from various 
problem domains in projects having different goals. 

The basic idea of the UniTesK test architecture is that a set of test components to develop can be 
used for testing various types of software following various test strategies. These components must 
have clearly defined responsibilities and interfaces through which they interact with each other. 
Information that can be provided only by the test developer is collected in a small number of 
components with neatly described roles. For each of these components, a simple and compact 
representation is developed that requires minimum effort from the user to create. 

The UniTesK test architecture [UniArch] is based on the following division of the testing task 
into subtasks. 

1. Verification of the system response to a single input action 
2. Generation of a single test input action 
3. Construction of a sequence of inputs intended to achieve a desired coverage 
4. Establishing binding between the test system based on an abstract model and the particular 

implementation of the target system. 
For each of these tasks an appropriate technological support is provided. 

To verify the software response to a single input, test oracles are used. Since the generation of 
test inputs is separated from the verification of the system response, we should know how to 
evaluate the behavior of the system in response to an arbitrary input action. The widely used 
method of generating oracles based on the computation of correct results for a fixed set of inputs is 
inappropriate for this purpose. We use general oracles based on predicates that depend on an input 
action and the system's response to this action. 

Such oracles can be easily constructed from contract specifications represented as preconditions 
and postconditions of interface operations, and data type invariants that state data integrity 
conditions [KVEST,ADLt]. Under this approach, every input action is modeled as a call to an 
interface operation with a certain set of parameters, and the system response is modeled as the 
result of this call. Below, we will consider the specifics of modeling asynchronous system 
responses and the corresponding specification techniques. 

Isolated test inputs are constructed by iterating through operations and through a wide variety of 
parameter arrays for each operation; the parameter arrays are filtered using the coverage criterion 
that is chosen as the testing goal. 

A set of isolated test input actions is insufficient to test software with complicated behavior that 
depends on the preceding interaction of the system with its environment. In this case, a series of 
test inputs is used, which is called test sequence. The sequences are constructed to verify the 
behavior of the system in various situations determined by a sequence of preceding calls and 
system responses. 

To construct test sequences, an FSM model of the system is used. Such a model assumes that the 
dependence of the system's behavior on the history of its interaction with the environment can be 
reduced to the dependence on the current internal state of the system, which changes in response to 
call of the system operations, under the assumption that the set of attainable states is finite. FSMs 
are simple, familiar to many developers, and can be used to model almost any program. To model 
concurrent or distributed systems, the variation of input/output finite state machines (IOFSMs) [10] 
are used. In these automata transitions are labeled either by an input or output symbol. The 
resulting automaton is represented by a test action iterator program component. This component 



has an interface to obtain the identifier of the current state, identifier of the next test input action 
that is admissible in the current state, and for executing an action determined by its identifier. 

More details on automata models used to test concurrent systems can be found in [AsSM]. 

A test sequence is generated dynamically during test execution by constructing an "exhausting" 
path trough the automaton transitions. This can be a path covering all its states, all transitions, all 
pairs of adjacent transitions, and so on. An algorithm for the construction of such a path for a wide 
class of FSMs is implemented in a separate component called test engine. 

An automaton model description convenient for a developer is called test scenario. Test scenario 
provides the basis for generating the test action iterator. Scenarios can be constructed by hand, but 
in many cases they can be generated from specifications of operations, test coverage criterion, 
iterators through operation’ parameter arrays, and a method for obtaining the identifier of the 
current state. Techniques for constructing test sequences are considered in the section after the next 
one in more details. Test engines of several types are provided in the form of library classes, and 
users do not need to develop them. 

To use specifications written at a higher abstraction level than the target system, mediators are 
used in UniTesK. A mediator determines a binding between a specification and an implementation 
of the corresponding functionality. Mediator also determines a transformation of model 
representations of inputs (calls of model operations) into their implementation representation and 
the inverse transformation of the target system responses into their model representation (the result 
returned by the model operation). 

 
Fig. 1. UniTesK test suite architecture. 



It is convenient to develop mediators in an extension of the target language, where only the 
transformations mentioned above should be described. Additional processing of the resulting code 
is required, since the mediator performs additional tasks related to specific features of the 
implementation environment and tracing the test progress. The code for performing these tasks is 
automatically added to the procedures transforming the test inputs and responses and describe by 
user. 

Figure 1 shows the main components of the test suite architecture used in UniTesK. In addition to 
these components, the test system includes several auxiliary components responsible for tracing the 
test progress, synchronization of states between model and implementation objects, and so on. 
These additional components are independent of the software under test and of the test strategy. 

UniTesK Test Development Process 
The table below presents UniTesK process of specification development, test development and 

testing. The process is presented as a sequence of steps, but in practice often it becomes necessary 
to return to some of the previously performed steps and to revise the decisions made. So, the actual 
process is iterative, but its matter is a move from requirements to tests and test results analysis. 

1. Analysis of functional software 
requirements on the base of 
documents available or knowledge 
and expertise of project 
participants and experts, 
transformation of requirements 
into formal specifications. 

 

2. Formulation of requirements to 
testing quality as a level of test 
coverage to achieve. After 
achieving this coverage level the 
testing can be finished. 

 

3. Development of test scenarios set 
that ensures the achievement of 
the target coverage level. 
Scenarios are developed on the 
base of specifications and do not 
related with some specific 
implementation of target system 
or its specific version. 

 

Requirements 

Specifications 

Specifications 

Target coverage level 

Specifications Target coverage level 

Requirements 
to testing 
quality 

Test scenarios 



4. Binding specifications with the 
target software interface. The set 
of mediators should be developed 
for that.  

 

5. Test system construction. To 
obtain a ready-for-use test system 
specifications, mediators, and test 
scenarios should be translated into 
target programming language and 
then compiled into binaries. 

6. Test execution with debugging of 
specifications, mediators, 
scenarios. 

7. Test results analysis. The testing 
quality should be assessed on the 
base of coverage criteria stated 
before. After that we can return to 
test scenario development to 
achieve higher coverage, or can 
finish testing and develop a report 
describing errors detected. 

Specifications Target interface 

Mediators 

The scheme on Figure 2 represents the process of construction of main components of UniTesK 
test suite architecture. 

Errors 

Test reports 

Testing quality assesment 

Target software 

Test reports 

Test system 

Automatic test execution and test 
reports generation 

Specifications 

Target software 

Mediators 

Test scenarios 

Automatic generation 

Test system 



 
Fig. 2. Construction of UniTesK test components. 

Let now consider the activities performed in course of test development in more details. 

Representation of Functional Requirements 
UniTesK supports an automatic generation of test oracles from contract specifications. With The 

target system is modeled as a set of components having interface operations with certain 
parameters. The environment can invoke interface operations and obtain the results. These results 
depend on the operation called, its parameters, and the history of the interaction of the system with 
its environment. Essential information on the history is modeled as the internal state of the target 
system components. Thus, the behavior of an operation in general case depends on the internal state 
and operation invocation can change it. 

Every operation is described by its precondition and postcondition. A precondition defines the 
conditions under which the operation can be called. It is the environment (clients) of the component 
that is responsible for the precondition to be satisfied. One can say that the precondition describes 
the domain of the operation in the space of all states ands all its parameter arrays. A postcondition 
imposes restrictions on the possible combination of the starting state, parameters, operation results, 
and the resulting state; these restrictions must be satisfied if the precondition holds when the 
operation is invoked. 

An operation can have parameters of certain types. These types, types of fields of the model state, 
and the types of model components are called interface types. For all interface types, the structure 
of their data is described along with integrity constraints on it represented in the form of invariants. 
The data structure of the model components determines all possible model states of the system. 

Program contracts were chosen as the basic specification technique since they are simple enough 
and can adequately describe software in various problem domains. Contract specifications can be 
made abstract or very detailed as required. Very important is that an ordinary software developer 
can be easily taught to understand and use contract specifications. 

In addition, the structure of program contracts is close to the architecture of the target system, 
which makes them clear for developers. The internal content of the contracts is close to the 
requirements for the system. Thus, the representation of the requirements in the form of contracts is 
easy. On the other hand, the result is considerably different from the description of the algorithms 



used in the implementation, which prevents simultaneous occurrence of the same errors in the 
specification and implementation. 

Contract specifications are not the only kind of specifications supported by UniTesK. One can 
also use executable specifications, which explicitly describe how the result of an operation is 
calculated and how the internal state of the component is changed. However, in this case, 
equivalence criteria between model and implementation results must be specified, since these 
results are not necessarily identical. 

Axiomatic specifications often cannot be directly transformed into general oracles, which verify 
system behavior correctness in response to an arbitrary input action. Therefore, axiomatic 
specifications are used only as additional verification criteria for certain test sequences. In such a 
role they can serve a base for test scenario construction. 

Test Coverage Criteria Based on Specifications 
The structure of contracts is used in UniTesK to define test coverage criteria, which are necessary 

to evaluate the quality of testing from the viewpoint of the requirements for the target software. To 
make possible automatic extraction of such criteria additional operators for defining functional 
branches are introduced. These statements are placed by the user in postcondition. A functional 
branch corresponds to a subdomain of the “same” behavior in the operation domain. We may 
assume that the behavior is “the same” if the constraints imposed on the operation's results and on 
the change of state are described by the same expressions in the postcondition for all points of the 
subdomain. 

The control flow graph of a postcondition computation should have exactly one functional branch 
statement at every path from the entry to any exit. The part of the path to such a statement must not 
contain branching points depending on the results of the operation. Then, every admissible call of 
the operation can be unambiguously associated with some functional branch; therefore, the quality 
of testing the operation can be measured as the percentage of functional branches covered by the 
test. Moreover, the functional branch can be determined from the current state of the components 
and the set of operation's parameters without actually performing the operation; this makes possible 
to construct a filter that discards parameters arrays that do not enhance the coverage. 

Functional branches in postconditions can help to extract automatically more detailed coverage 
criteria based on the structure of branching points in preconditions and postconditions. The most 
detailed criterion of this type is disjunct coverage criterion, which is determined by all possible 
combinations of values of prime logical formulas used in these branching points. It is an analog of 
the MC/DC criterion [MCDC] for the source code coverage. 

Some disjuncts can be unattainable due to implicit semantic relations between logical formulas 
used (these problems are similar to those occurring when the MC/DC criterion is used). Such 
problems are resolved by using an explicit description of semantic relations between prime logical 
formulas in the form of tautologies, i.e., logical expressions constructed from prime formulas that 
are identically true due to dependences between formulas. 

In addition to the possibility of controlling coverage criteria that are automatically extracted from 
the structure of specifications, the user can describe additional specification-based coverage criteria 
by hand as a set of predicates that depend on the parameters of operations and the state. These 
criteria can also be used to determine testing goals. 

Test Sequence Construction 
UniTesK uses FSM models of the target software in the form of test scenarios to generate 

sequences of test inputs on-the-fly. A scenario determines what is considered as the FSM state and 
which operations with what parameters arrays should be invoked in each state. In the course of a 



test execution, the test engine constructs an "exhaustive" path through the FSM's transitions thus 
generating a test sequence. 

This method of test generation guarantees that the state of the system changes only due to 
invoking target operations and that only the states that are attainable in this way can appear in the 
course of testing. Thus, the iteration through states is performed automatically, and the test 
developer should only determine how to iterate through the parameters of operations used. 

When the scenario is developed, a specification-based coverage criterion can be used to 
determine what coverage level we want to achieve, and a set of states and transitions can be 
determined in such a way that the transition tour in the resulting FSM guarantees that the desired 
coverage level is achieved. For this purpose, it is sufficient to consider a set of predicates that 
determines elements of the coverage for an operation under test as a set of domains in the space of 
states and parameters of this operation and project these domains on the space of states. 

After that all possible intersections of these projections for all operations are constructed. So, we 
get a collection of sets of states such that any operation invoked for two states from the same set 
covers the same elements according to the coverage criteria used. Therefore, all such states of the 
system are equivalent from the viewpoint of this coverage criterion, and one can consider those sets 
of states of the system as the states of the resulting FSM. Stimuli in this FSM are equivalence 
classes (with respect to the coverage criterion) of operation calls; i.e., they are the equivalence 
classes that cover the same element of the coverage. An additional transformation of the automaton 
may be needed to make it deterministic (for details, see [FACTOR]). 

In the course of testing the automatically generated filters that discard the sets of arguments that 
do not enhance the coverage are used. The availability of such filters makes possible to save user's 
efforts in computation of the parameters values needed to achieve the desired coverage; instead, 
one can specify a large set of parameters that surely contains all necessary values. Thus, UniTesK 
makes possible efficient testing intended to achieve high coverage level. 

A test scenario represents an FSM in an implicit form; i.e., states and transitions are not listed 
explicitly and final states of the transitions are not specified. Instead, one specifies a method for 
computation of the current state, a method for comparing states, a method for iterating through 
admissible inputs (operations under test and their parameters), which depends on the state, and a 
procedure used to apply the input action. Although such a representation of FSM models is 
uncommon, it makes possible to describe complex models in a compact form and easily modify 
them. 

A scenario can define the states of the automaton model not only on the base of the model state 
described in the specification, but also take into account certain implementation aspects that are not 
described in the specifications. On the other hand, we can abstract from certain details in the 
specifications, thus decreasing the number of states in the resulting model (see [FACTOR]). Thus, 
the test generation can vary independently of specifications and, therefore, independently of the 
mechanism used to verify the behavior under a single input action. 

Test scenarios can be developed by hands, but often they can be generated automatically with the 
help of an interactive tool called the scenario generation template, which requests the user to 
provide only the necessary information and uses reasonable default assumptions. The scenario 
generation template helps to construct both scenarios that do not use filtration of test inputs and 
scenarios targeted at high coverage level in terms of one of the criteria extracted from the 
specifications. 

Test scenarios written in terms of specifications determine abstract tests that can be used for 
testing any system described by those specifications. Besides, scenarios can be reused with the help 
of the inheritance mechanism. A scenario that inherits the other one can override the state 
computation procedure and override or enhance the set of test input actions that can be applied to 
the system at every state. 



To test concurrent and distributed systems, UniTesK uses special-type test engines generating 
pairs, triples, and wider sets of concurrent input actions at every state, and slightly enhanced 
specifications. In addition to specifications of operations, which model input actions applied to the 
target system and its synchronous responses, we can specify asynchronous responses of the system 
representing them in the form of an operation without parameters having preconditions and 
postconditions. 

To describe system response on concurrent inputs the plain concurrency axiom is used. This 
axiom states that the result of concurrent execution of any set of operations coincides with the 
execution of the same set of operations in some order. It allows to specify system behavior only in 
response for single input actions and to deduce its behavior when these actions are applied 
concurrently. Not all the software systems satisfy this axiom, but the most part of practically 
significant systems can be modeled with the help of models satisfying it. 

Automaton models used for testing such systems are a generalization of input/output automata 
[IOSMA]. When a plain system is tested, the following method is used to verify its behavior. If the 
input actions processed by the system and its asynchronous responses can be fully ordered in such a 
way that in the resulting sequence the corresponding precondition is satisfied before every call of 
an operation or occurrence of asynchronous response and the corresponding postcondition is 
satisfied after each operation or response occurrence, then the behavior of the system is correct. 
Actually, this means that the observed behavior of the system does not contradict the specifications. 
If no such ordering can be constructed, then we conclude that a discrepancy between the system's 
behavior and the specifications is detected. 

In addition to the capabilities mentioned above, UniTesK test scenarios make possible to perform 
testing based on conventional scenarios. The latter assumes that sequences of inputs are generated 
by user-defined rules, and the user specifies a method for verifying the system behavior. In 
particular, one can use test scenarios that refine the target system use cases. 

Another method of test scenario construction is based on axiomatic specifications, which describe 
the correct system behavior in the form of constraints imposed on the results of invoking certain 
sequences of target operations. Every such sequence with the verification of the corresponding 
constraints can be represented in the test scenario as an action that will be applied in all states 
where it is admissible. Algebraic axioms, which require equivalence of the results for two or more 
calling sequences, can be verified by representing each sequence as a separate action and 
comparing the results with the results of executing other sequences for the same state of the system. 
Test scenarios provide a convenient mechanism for storing intermediate data (in this case, the 
results of executing preceding sequences) associated with the state. 

Binding Specifications and Implementation 
Specifications used in UniTesK for test development can be related with the implementation 

through mediators. This makes possible to develop more abstract specifications, which can be 
extracted from requirements and used for testing several versions of the target software. Test suites 
become more abstract and reusable. In addition to the advantages mentioned above, there are the 
following additional advantages of using mediators. 

♦ The correspondence between the requirements (represented by specifications) and test suites 
can be controlled automatically. 

♦ The co-verification development is supported, that is simultaneous development of the 
software and tests for it. This kind of development reduces the development time while 
ensuring a certain quality level. 

♦ A more efficient infrastructure for distributing commercial software components can be 
supported. One can develop open specifications for the functional capabilities of such 
components supplemented with a test suite, which demonstrates that the component actually 
implements the desired functions. The component developer can attach mediators to the 



implementation that relate it to the open specifications. Thus, every user or independent tester 
can verify the correctness of the implementation. In addition, users of such components can use 
extended test suites to verify the behavior of the components in more situations. 

Mediators can be developed by hands and thus determine nontrivial transformations between the 
model interface and the implementation interface. In simple cases the mediator generation template 
can be used for automatic generation of mediators. In this case the specification and 
implementation components should be specified and a correspondence between their operations 
must be established. For each operation we should specify a transformation of model parameters 
into the implementation ones and a transformation of the implementation results into the model 
ones if these transformations are not identical. 

UniTesK makes possible to use externally visible information about the implementation state to 
construct the model state. The testing method assuming that the model state is constructed on the 
base of available reliable information about the implementation state independently of target 
operations invoked is called the open state testing. When this kind of testing is used, the procedure 
for constructing the model state is implemented as a special mediator operation, which is 
automatically called by the test system after every call of the target operation (if there are no 
concurrent calls of the target system and asynchronous responses). 

If available information is insufficient for the construction of the model state (or when concurrent 
calls are tested or when the system can provide asynchronous responses), the hidden state testing is 
used. In this case, the model state obtained after the operation call is constructed on the base of the 
preceding model state, call parameters, and the results of the call. This method yields a hypothetical 
next model state under the condition that the observed results of the call do not contradict the 
specifications. The method is correct if the constraints specified in the postcondition of any 
operation can be uniquely resolved with respect to the model state after the application of this 
operation. Mediators for this kind of testing must contain, for each model operation, a construction 
of the model state obtained after the application of this operation. 

Uniform Extension of Programming Languages 
As a rule, formal specifications are written in specialized languages that have a large set of 

expressive means and rigorously defined semantics. UniTesK enables one to use such languages if 
for any pair (specification language, implementation language), clear rules for transforming 
interfaces are formulated and development tools for such transformations are available. 

However, formal specification languages are difficult to be used for testing in spite of their 
advantages. This is because of difficulties arising in the definition of interface transformations. The 
difficulties arise due to different paradigms underlying the specification and implementation 
languages, the absence in specification languages analogs of certain concepts that are widely used 
in implementation languages (e.g., pointers), differences in the semantics of simple data types, and 
so on. Therefore, the construction of mediators requires huge effort of highly qualified experts who 
know both languages very well. The required training is very costly and takes a long time. 

In order to make the technology available to ordinary developers, UniTesK supports development 
of specifications and scenarios in extensions of widely used programming languages. To this end, a 
uniform system of basic concepts has been developed that are used for developing specifications 
and scenarios; these are the concepts of precondition, postcondition, invariant, functional branch, 
and the scenario method (which determines a uniform family of test inputs in the scenario). For 
each of these concepts, rules for the extension of a programming language by a corresponding 
construct are formulated. For languages that already have constructs for representing the 
corresponding concepts, only the lacking constructs are added. 

An important advantage of using an extension of the target system language for writing 
specifications is that such specifications can be easier related to the implementation. An ordinary 
developer can be easily taught to write specifications in the extension of the target language. The 



problem of insufficient expressiveness of the majority of modern object-oriented languages is 
solved by using libraries of abstract types. 

The problem of possible dependence of the specification meaning on the platform used can be 
solved in several ways. First, one can prohibit using in specifications language constructs that have 
insufficiently clear meaning and can be interpreted differently on different platforms. Second, 
libraries that operate identically on all supported platforms can be developed and recommended for 
use. Third, in specific cases, remote testing can be performed under which the test system is 
executed on the same platform where the specifications were developed. 

Below you can find a table presenting examples of specifications of square root function. 
Specifications in extensions of different programming languages are shown in the left column of 
the table. The right column contains the notes on the structure of specifications. 

Java 
specification package example; 
 
class SqrtSpecification 
{ 
  specification static double sqrt ( double x ) 
    reads x, epsilon 
  { 
    pre { return x >= 0; } 
    post 
    { 
      if(x == 0) 
      { 
        branch "Zero argument"; 
        return sqrt == 0; 
      } 
      else 
      { 
        branch "Positive argument"; 
        return sqrt >= 0 && 
          Math.abs((sqrt*sqrt-x)/x)<epsilon; 
      } 
    } 
  } 
} 

Package declaration 
 
Class declaration 
 
Operation specification 
Read/write access description 
 
Precondition 
Postcondition 
 
 
 
Functional branch definition 
Constraints on the result 
 
 
 
Functional branch definition 
Constraints on the result 
 
 
 

 



 

C# 
namespace Examples 
{ 
  specification class SqrtSpecification 
  { 
    specification static double Sqrt ( double x ) 
      reads x, epsilon 
    { 
      pre { return x >= 0; } 
      post 
      { 
        if(x == 0) 
        { 
          branch ZERO ("Zero argument"); 
          return $this.Result == 0; 
        } 
        else 
        { 
          branch POS ("Positive argument"); 
          return $this.Result >= 0 && 
            Math.Abs( ($this.Result * $this.Result - x)/x) 
              < epsilon; 
        } 
      } 
    } 
  } 
} 

Namespace declaration 
 
Class declaration 
 
Operation specification 
Read/write access description 
 
Precondition 
Postcondition 
 
 
 
Functional branch definition 
Constraints on the result 
 
 
 
Functional branch definition 
Constraints on the result 
 
 
 
 

 

C 
specification double SQRT ( double x ) 
  reads (double)x, epsilon 
{ 
    pre { return x >= 0.; } 
    coverage BRANCHES 
    { 
      if(x == 0) 
        return(ZERO, "Zero argument"); 
      else  
       return(POS, "Positive argument"); 
    } 
    post 
    { 
      if(coverage(ZP, ZERO)) 
        return SQRT == 0.; 
      else  
        return SQRT >= 0. && 
          abs((SQRT*SQRT - x)/x) < epsilon; 
    } 
  } 
} 

Operation specification 
Read/write access description 
 
Precondition 
Test coverage definition 
 
 
Functional branch definition 
 
Functional branch definition 
 
Postcondition 
 
 
Constraints on the result 
 
Constraints on the result 
 

Test Execution and Test Results Analysis 
UniTesK tools support the automatic execution of tests developed and the automatic collection of 

tracing information. After a test is completed, a set of additional test reports can be generated based 
on this information. These reports show the structure of the automaton revealed in the course of 
testing, the test coverage achieved for all coverage criteria defined for a certain specification 



operation, and information about detected failures, which may occur due to errors in the target 
system or in specifications, scenarios, and mediators. 

The test trace can be used to obtain additional information. For example, one can find out the 
kind of failure, the values of parameters of the operation that caused the violation, the particular 
constraint in the postcondition that was violated, and so on. The information contained in the trace 
and other reports is sufficient for debugging test system, for evaluation of the testing quality, and 
often helps to localize errors. 

Below the examples of test reports generated by J@T tool supporting UniTesK testing of Java 
software are presented. 

 

J@T Failure Report 
generated: 12.12.2003 17:48:48 

 

 
Report Overview  

All Failures  
o Specifications Coverage  
o Scenarios Coverage  

 
test situation 

branch Withdrawn sum is too large 
mark Withdrawal from empty account; Withdrawn sum is too large 

predicate ( !( 0 < balance ) && ( balance == 0 ) ) && ( ( ( balance - sum 
) < -maximumCredit ) ) 
true 0 < sum 
false 0 < balance 
true balance == 0 
true ( balance - sum ) < -maximumCredit 
true balance == @balance 
false withdraw == 0 
- balance == ( @balance - sum ) 
- withdraw == sum 
- reads sum 

disjunct 

- reads maximumCredit  
Fig. 3. Description of detected failure. 



 

 

J@T Specification Method Coverage 
Report 
generated: 12.12.2003 17:48:48 

 

 
Report Overview  

o All Failures  
o Specifications Coverage  

 Failures  
 Branches  
 Marks  
 Predicates  
 Disjuncts  

o Scenarios Coverage  
 
Packages Overview  
 
ru.ispras.redverst.se.java.exam 

o AccountSpecification  
 deposit( int )  
 withdraw( int )  

deposit( int ) total 
branches marks predicates disjuncts hits/fails 
100% (1/1)  100% (3/3)  100% (3/3)  100% (3/3)  28  
 

disjuncts total branches marks predicates 
f1 f2 f3 f4 f5 f6 f7 hits/fails 

Deposit on 
account with 
negative 
balance; 
Single 
branch 

predicate1 + + - - * * * 6  

Deposit on 
empty 
account; 
Single 
branch 

predicate2 + + - + * * * 2  Single branch

Deposit on 
account with 
positive 
balance; 
Single 
branch 

predicate3 + + + * * * * 20  

 
predicates 

identifier meaning 
predicate1 ( !( 0 < balance ) && !( balance == 0 ) ) 
predicate2 ( !( 0 < balance ) && ( balance == 0 ) ) 
predicate3 ( ( 0 < balance ) ) 
 

prime formulas 
identifiermeaning 
f1 0 < sum 
f2 !( ( Integer.MAX_VALUE - sum ) < balance ) 
f3 0 < balance 
f4 balance == 0 
f5 balance == ( @balance + sum ) 
f6 reads sum 
f7 reads Integer.MAX_VALUE  

Fig. 4. Report on test coverage achieved. 



 
Fig. 5. Test trace in MSC representation. 

 
Fig. 6. Test trace represented as FSM state transition graph. 



Comparison with Other Approaches to Model Based Test Development 
Although almost every UniTesK feature can be found in other technologies and test development 

systems (sometimes, in a more advanced form), none of the approaches available in the academy 
community and software industry has all the capabilities of UniTesK. 

In the short survey presented in this section we focus on methods for test development supported 
by corresponding tools and intended to be used in software industry. Thus, many interesting 
techniques developed in academic community are left beyond the scope of this survey. 

The available approaches to test development mainly rely on the conventional test architecture 
that was set up several decades ago. In this architecture a test suite is a set of test cases each of 
which is used to verify a certain property of the target system in a particular situation. In UniTesK, 
test suites are constructed in the form of scenarios, and every scenario actually plays the role of a 
set of test cases verifying the behavior of a certain group of interfaces in various situations. As a 
result the UniTesK test suite has more hierarchical levels, which is convenient when large and 
complex systems are tested. On the other hand, test cases make possible to reconstruct certain 
situations more efficiently when testing is repeated (for example, to check whether an error has 
been eliminated). Both schemes are equally suited for regression testing, since it usually requires 
the execution of the entire set of tests. 

Automatic generation of test oracles differentiates UniTesK from such tools as JUnit [JUNIT], 
which automate only the execution of tests. However, automatic generation of test oracles is 
supported by many available tools, for example, the following ones. 
♦ iContract [iContract,iContractW], JMSAssert [JMS], JML [JML,JMLW], jContractor 

[jContr,jContrW], Jass [Jass,JassW], Handshake [Handshake], JISL [JISL] use contract 
specifications written in the target system code in the form of comments in an extension of Java 
(reviews of such systems can be found in [CCNET] и [ORA]). 

♦ SLIC [SLIC] makes possible to write contract specifications in an extension of C with the use 
of temporal logic predicates. 

♦ Test RealTime [TRT] developed by Rational/IBM uses contracts and a description of the finite 
automaton model of the target component in the form of special scripts. 

♦ JTest/JContract [PARASOFT] by Parasoft and Korat [KORAT] make it possible to write 
preconditions, postconditions, and invariants in the form of special comments in Java programs. 

♦ ATG-Rover [TRover] uses specifications in the form of contracts written as comments in C, 
Java, or Verilog, which can represent predicates of temporal logics LTL and MTL. 

♦ The family of ADL tools [ADLt] is based on extensions of C, C++, Java, and IDL, which are 
used for the development of contract specifications that are not strictly connected with a 
specific code. 

♦ T-VEC [TVEC] uses preconditions and postconditions in the form of tables in the SCR 
notation [SCR]. 

UniTesK differs from the three first tools above by substantial support of test development; in 
particular, it includes extraction of coverage criteria from specification and a mechanism for test 
sequence generation from scenarios. In JTest, the capability of automatic test sequence generation 
is declared, but the resulting sequences cannot contain more than three operation calls and are 
constructed randomly, so the test sequence construction cannot be targeted to maximize test 
coverage. 

Korat is one of the tools developed in the framework of the MulSaw project [MulSaw] in the 
laboratory of computer science in MIT. This tool uses contracts written in JML for generation of 
input data for a single method in a Java class, including the object in which this method is called. 
The generated data set guarantees the coverage of all logical branches in the specifications. Thus, 
instead of constructing a test sequence, one can immediately obtains the object in the desired state. 
In this case specifications must be rigidly associated with an implementation. In particular, they 



should not allow states of the target component such that cannot occur in the course of its 
operation; otherwise, many generated test will correspond to unattainable states of the component. 

ADL tools support test development only in the form of a library of input data generators, which 
is similar to the library of iterators in UniTesK. ATG-Rover can automatically generate templates 
of test sequences for specification coverage. It is not clear from the available documentation if 
these templates should be further processed by hands to become actual test sequences, but the 
possibility of such a processing is declared. 

T-VEC uses special form of specifications to extract automatically information on boundary 
values of the regions in which a function described by those specifications behaves "identically" 
(cf. the definitions of functional branches in UniTesK). Test inputs are generated to cover the 
boundary points of functional branches of the function. A complete test suite is a list of pairs in 
which the first element is a set of parameters of the operation under test and the second element is 
the correct result of this operation on this set of parameters calculated from the specifications. 
Generation of test sequences is not supported. 

To our knowledge, there are no other tools besides T-VEC that (as UniTesK) support generation 
of test suites targeted at high coverage in terms of criteria extracted from the internal structure of 
contract specifications. The majority of tools available can determine the coverage of specifications 
only as the percentage of operations that were called. 

Generation of test sequences is supported by many tools that use models of the target system in 
the form of various automata such as extended FSMs, communicating FSMs, input/output 
automata, labeled transition systems, Petri nets, and so on. Such instruments suit well for the 
verification of telecommunication software, since formal specification languages based on the 
models listed above (such as SDL [SDL,ITUSDL,ITUSDLN], LOTOS [LOTOS], Estelle [Estelle], 
ESTEREL [ESTEREL,ESTERELL], or Lustre [Lustre]) are often used in the development of such 
kind of software. The majority of these tools use a description of the system behavior in one of 
such languages as a specification, which is then transformed to an automaton model of the 
corresponding type. 

In addition to the specifications of system behavior, some of these tools use some analogs of test 
scenarios usually called test purposes, which are formulated by the user in the form of a sequence 
of messages that are exchanged by software components (MSC) or in the form of a small FSM (see 
for example [TPA,TPB,CADPO,TGV,TorX]). Other tools use explicitly described automaton 
models for the generation of test sequences targeted to achieve a certain level of coverage with 
respect to a certain criterion [SDLt,EST]. As has been mentioned above, UniTesK supports 
generation of test sequences from user-defined scenarios and an automaton model of the system; 
thus combining both approaches. 

In terms of capabilities, GOTCHA-TCBeans [UMBTG,GOTCHA] (one of the test generation 
instruments of the AGEDIS project [AGEDIS,AGEDISW]) and AsmL Test Tool 
[ASMT,ASMTW] are most close to UniTesK. Both these tools use automaton models of the target 
software. For GOTCHA-TCBeans, this model must be described in an extension of Murphi 
language [Murphi], while AsmL Test Tool uses a description of the target system in the form of an 
abstract state machine (ASM) specification [ASMI,ASMB].  

All three approaches use models of different types for constructing tests, which makes possible to 
generate more efficient, flexible, and scalable tests; moreover, many test components may be 
reused. In UniTesK, these are the model of system behavior represented by specifications and the 
testing model represented by the test scenario. In GOTCHA-TCBeans and other tools of the 
AGEDIS project, these are the automaton model of the system and a set of test directives that 
control the process of test generation. In recent versions of AsmL Test Tool, these are the ASM 
model of the system and a set of observable variables; the sets of values of these variables 
determine states of the automaton used to construct the test sequence. 



In those tools, certain techniques for decreasing the size of model are used, which are similar to 
automata factorization used in UniTesK. GOTCHA-TCBeans uses a particular case of factorization 
that ignores values of certain fields in the model state [PROJ]. AsmL Test Tool can construct test 
sequences on the basis of a FSM whose states are obtained by reduction of the complete state of the 
ASM to the set of values of elementary logical formulas used in the description of ASM transitions 
[FfASM]. 

The main differences between UniTesK from one side and GOTCHA-TCBeans and AsmL Test 
Tool from the other side are the support of programming language extensions for specification 
development, the use of contract specifications, automatic control of specification coverage, and 
the use of filters targeted to produce test inputs that enhance coverage. 

Experience of UniTesK Applications 
The development of tools supporting UniTesK technology was started at the end of 1999. By that 

time several joint projects with Nortel Networks had been conducted where KVEST technology 
had been used for test development and regression testing of complex telecommunication software 
systems. Examples of the systems, to which KVEST was applied, are the following. 

• The kernel of switch real-time operating system (about 250K lines of code written in Protel 
language similar to С). 

• The message management system. 
• The framework of base level telecommunication services. 
• The distributed peer-to-peer messaging system. 

The first UniTesK implementation ready for real use was CTesK intended for testing C programs. 
The simplified version of CTesK tools was developed by the end of 2000. By the middle of 2001 
they were actively used in the research project supported by Microsoft Research. The project goal 
was to test the implementation of new generation Internet protocol IPv6. Besides, it was necessary 
to check the applicability of UniTesK to telecommunication protocol implementation testing. By 
the end of 2001 the project was finished. The serious errors were found that can cause crash of 
operating system on any node in IPv6 network. The suitability of UniTesK for such kind of 
problems was approved by the fact that none of a dozen groups working worldwide on testing the 
same implementation managed to find these errors. The novel approach to testing distributed and 
concurrent systems based on asynchronous reaction specifications and IOSM models was 
successfully applied in this project. 

In 2003 the pilot project using CTesK to test real-time software was conducted (algorithms of 
navigation control, GosNIIAS). In spite of short project terms the serious error was found. 

In the middle of 2002 the first commercial version of J@T tool intended for testing Java software 
war developed1. By the end of 2003 several pilot projects using J@T were conducted, the following 
systems were tested in these projects: 

• The banking client data management system implemented in three-tier architecture on the 
base of EJB technology (Luxoft). 

• The query creation and query data transformation subsystem in distributed banking Web 
application (Tarang) 

• The DBMS communication subsystem in the framework for multi-tier business application 
development (VisualSoft) 

• The client working time control subsystem in billing system (VebTel). 

All the projects mentioned above demonstrated the high effectiveness of UniTesK technology. 
Errors were found in all the systems tested, some of them are recognized by customers as very 
serious. For example, the situation was found when the results of unprocessed transactions were 

                                                 
1 J@T tool can be also used to test C++ software through additional mediator level. 



saved in database. Some of the projects mentioned were conducted in very short terms — about 1-2 
days. 

In 2001 RedVerst group and Intel started the joint research project on adaptation of model based 
testing techniques to optimizing modules of compilers. At first the experiments were conducted on 
free compilers such as gcc and Open64. Even the first case studies showed that high test coverage 
can be achieved with the help of techniques used. For optimizing modules of gcc compiler the tests 
constructed covered about 90-95% of operators, which is very high for industrial testing. Then, the 
experiments were conducted on the last generation of Intel compilers for Itanium 64-bit platform. 
The effectiveness of the adapted technology was approved there too. 

By the middle of 2003 on the base of the experience gained the toolkit for model based test 
construction for compilers and other text processors was developed. The toolkit was then applied to 
generation of protocol data for protocol implementation testing. 

The adaptation of UniTesK to compiler testing required to solve several serious problems and to 
develop new techniques of test construction. The following tasks were solved. 
• The description of model language, which is simplification of the compiler’s input language. 
• The development of iterators of model language constructs.  
• The test oracle construction to check the correctness of optimization.  

The toolkit for compiler testing was included in the UniTesK tools family. It demonstrated that 
model based test construction techniques are rather general and can be applied in wide domain. 

By the end of 2003 the first version of Ch@se tool intended for .Net application testing was 
developed. It is based on the extension of C# language and provides one more implementation of 
UniTesK technology. 

The full list of projects where UniTesK was applied and description of their results can be found 
on RedVerst web site [RedVerst]. 

Conclusion. Open Problems and Lines of Future Development 
The experience of UniTesK applications along with experience of other groups working on model 

based testing methods shows that this approach is quite effective. What are the obstacles that 
prevent wide use of model based testing techniques? They can be divided into three groups. 
• Methodical problems concerned with methods of specification and test development. 
• Technical problems concerned with unification of specification development methods and 

tools supporting such a development. 
• Organizational problems concerned with transition of the methods and tools to the industrial 

software development processes. 

The complexity of the problems increases from the first group to the third one, which is shown by 
the experience of many groups using model based testing methods to test industrial software. 
Almost in all cases the modeling method can be found that help to achieve both high quality of 
testing and affordable cost of test development. So, lack of the appropriate theoretic and methodical 
developments is not the main obstacle for use of the approach discussed. 

Now there is no general consent on the methods and notations used for model based testing, and 
there is no generally recognized uniform verification suite architecture2, tools for static or dynamic 
analysis of software and representations of results of such analysis are far from unification and 
interchangeability. Nevertheless, the need for such unification already exists. The widely known 
attempt to unify test suite architectures is UML Testing Profile [UML-TP] developed in the 
framework of MDA (Model Driven Architecture, [MDA]) program. The authors of UML Testing 
Profile maybe have tried to find a compromise suitable for all the members of OMG consortium 
                                                 
2Verification suite is a collection of componets of models and tests constructed on their base considered with all the 
relations between them. 



and suggest the architecture targeted mostly for manual test development. This approach can be 
used in test development based on use case specifications, but it becomes a limiting factor if we use 
automata models or contract specifications for test development. Maybe this is caused by the lack 
of understanding of advantages of contract specifications, and OCL (Object Constraint Language) 
in particular, for industrial software development. Thus, the problem of unification is not only 
technical. It is important to find a unified approach that will enable test development on the base of 
any model kinds using any technology (or manually) in the single framework. 

Organizational problems are the most critical ones today [Robinson, Manage]. As we already 
mentioned above, the successful test development technology should be integrated in the 
conventional development processes and should not require long and expensive staff training. Are 
there any ways to combine mode based testing techniques with conventional development methods 
without breaking the latter? 

It seems that there are no ways for absolutely painless introduction of model based methods in the 
industry, because of problems of staff preparation, not only technical one, but also managers. Now 
test development and testing are regarded mostly as only auxiliary activities in the industry. Testers 
are often considered as low-skilled staff, without requirements to have basic programming skills or 
to know some programming languages. In attempt to simplify the collaboration between testers and 
developers project managers often target testers only on system testing, without development of 
module or integration tests. In this case an illusion appears that testers have enough time to prepare 
quality tests. But in reality by the evaluation testing time the system can demonstrate reliable 
operation only on mostly used scenarios and requires a lot of additional work for most part of 
uncommon use cases. 

It is quite obvious that the negative tendencies mentioned cannot be “broken” by force, they can 
only become outdates in the course of development processes evolution. Now such an evolution 
can be supported by assigning additional verification and testing activities to designers and 
developers. These activities will become conventional only when they lead to obvious positive 
changes in the main activities of software designers and developers. This is the reason to integrate 
tools for test development automation in the development environments, making them accessible 
not only for testers, but also for developers.3

To extend the model based testing community we need to develop and apply new forms of 
education to make it more effective for these methods. All the UniTesK tools are supplemented 
with user documentation and training materials. Two forms of mastering the tools are suggested — 
traditional university course and intensive training course. University course requires 15-30 hours 
and training requires spending 8 hours in a day and 3-4 days. University course materials are 
provided with academic licenses for UniTesK tools for free. They are also supplemented with 
examples of specifications and tests for various applications. 

The main strategic goal of further UniTesK development is to develop full scale industrially 
applicable technologies for testing any kind of industrial software. 

For successful progress of model based testing techniques the following three aspects should be 
developed simultaneously. First, the functionality of these techniques should be extended, second, 
the integration between them and conventional development processes should be made as smooth 
as possible, and third, the usability of the techniques should be increased. The most important task 
is to increase the usability of model based testing for the most common development tasks. 

The extension of the model based testing domain should be provided in the following directions. 
1. Development of full scale technologies for testing all components of compilers, interpreters, 

DBMS, and other applications processing requests in formal languages. 

                                                 
3It is a common knowledge that the developer cannot test the system he develops. But when the models used are 
different from implementation in their structure such testing become effective. 



2. Development of automated model based testing technology for graphical user interfaces 
(GUI). 

3. Development of full scale testing technologies for distributed systems, especially for multi-
tier and client-server applications widely used now. 

4. Development of testing techniques for components with very complex functionality and 
narrow interface as task schedulers, garbage collectors, transaction managers, etc. 

5. Development of testing techniques for applications with elements of artificial intelligence 
such as image recognition applications, intellectual agents, applications on the base of fuzzy 
logic, etc. 

Besides providing solutions for problems of testing itself, we need software quality metrics that 
can demonstrate advantages of model based testing methods. Nowadays, most part of metrics used 
for evaluation of resulting software quality or to control the state of development process is suited 
for manual test development. But when they are applied to the projects using automated model 
based test generation, they show a paradoxical picture. To demonstrate advantages of model based 
testing we need methods to clarify the relation between the original informal requirements, their 
models used, and resulting tests. Another problem is lack of suitable reusability metrics that can 
evaluate impartially impact of changes in requirements, in testing quality requirements, in the target 
software architecture, in the development technologies used on the tests. Development and 
application of such metrics in the industry can increase the importance of technologies intended to 
provide high quality software, that in turn will inspire new developments in testing automation and 
model based testing. 
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