
Vdm++TesK: Testing of VDM++ programs

Alexander A. Koptelov, Victor V. Kuliamin, and Alexander K. Petrenko

Institute for System Programming of Russian Academy of Sciences (ISPRAS),
B. Communisticheskaya, 25, Moscow, Russia
{steve,kuliamin,petrenko}@ispras.ru

http://www.ispras.ru/˜RedVerst/

Abstract. This article presents the Vdm++TesK technology – a tech-
nology of test development for programs written in VDM++. To support
this technology, the demo version of Vdm++TesK tool was developed.

1 Introduction

This article is dedicated to Vdm++TesK test development technology.
Vdm++TesK is a technology based on the UniTesK [6] test development
methodology, and intended for testing programs that are written in VDM++.

UniTesK is a successor of KVEST test development technology [11] developed
by RedVerst [5] group of ISP RAS for Nortel Networks. KVEST was used in
Nortel Networks projects for over 5 years and had gained both positive and
negative experience. UniTesK is an attempt to overcome KVEST problems.

UniTesK is based on utilization of the software contract of the tested software
(its constraint specifications) to generate the test suite for this software.

2 UniTesK test suite

Before we begin to describe the process of the test development in Vdm++TesK,
let’s look shortly at the UniTesK methodology. The full description of the
UniTesK architecture can be found in [6].

2.1 The basic concepts of UniTesK

One of the main goals of testing is to demonstrate that behavior of the tested
system (or target system) conforms to its requirements. To do this automatically,
requirements should be written in rigorous, clear, and unambiguous way (in the
form of formal specifications). UniTesK implements approach of conformance
testing — the formal specification allows generating an oracle, program that
checks the result of the target system’s work against constraints given in its
specification, and assigns a verdict on their correspondence.

Since in most cases a system can’t be tested in all of the test situations (due
to their very huge amount), in UniTesK the testing is performed only in a finite

set of equivalence classes of such situations. This approach is called partition
testing.

The percent of situations (from some set of testing situations) that are tested
during some test is called test coverage. Measures of different coverages of the
target component’s domain are usually called test coverage criteria. The coverage
chosen as a test coverage criterion for a test we call the target coverage of this test.
Since we want to be able to test the component with different target coverages,
we need to generate from its specifications a kind of a universal oracle, which
can check the correctness of the component’s behavior for an arbitrary input
(see [11,10,9] for more details on automatic generation of such kind of oracles).

To test a system in its different states, the system is modeled by some au-
tomaton. An automata based testing is one of the main concepts of UniTesK.

Since the amount of the system’s states is huge or even infinite, an equivalence
relationship is defined over them. So, we can convert the initial automaton to
the one with less set of states. In UniTesK, the particular case of this conversion
is used, that is called factorization technique, and described in [8].

2.2 Details of UniTesK Test Suite Architecture

The core of UniTesK test suite is the traversal mechanism for finite automata.
To provide additional flexibility, it is divided into two parts: test engine com-
ponent encapsulating an algorithm of traversal of a finite automaton from some
class, and test sequence iterator component, which embodies all the details of
particular automaton. Test engine and test sequence iterator interact through
well defined interface consisting of the following three operations defined in test
sequence iterator.

– State getState(). This operation returns the identifier of the current state
of the automaton. State identifiers can be stored by test engine to facilitate
a traversal, but the only thing it can do with them is comparison, which
shows whether two identifiers designate one state of the automaton under
traversal or two different states.

– Input next(). This operation seeks for the next input symbol in the current
state, which has not been applied yet during this traversal. If there are some,
it returns anyone of such symbols, otherwise it returns null. The objects of
Input type are identifiers of input symbols. As state identifiers, they also
may be stored by test engine and can be compared with each other.

– void call(Input param). This operation applies the input symbol iden-
tified by the param object in the current state. It actually performs the
corresponding transition in the automaton under traversal.

Notice, that the definition of the automaton is implicit – only sequences of
input symbols for each state are specified. There is no need to specify all of its
states and transitions between them.

One more important point of UniTesK test suite architecture is the use of
adapter pattern (see [7] on detailed description of this pattern) to bind specifi-
cation and implementation of the target component. For historical reasons, we

2

call such adapters, which have specification interface and implement it on the
base of the implementation under test, mediators.

Automata-based test sequence generation

Test Engine Implements an undemanding al-
gorithm of automata traversal

?
Test Sequence Iterator

Retrieves current state, iterates
input symbols in current state
and applies them

?
Oracle

Performs call of model operations
and checks its results for consis-
tency with specifications

?
Mediator

Transforms calls of model inter-
face into calls to implementation
and synchronizes the model state
with the implementation one

?
Target Component

Fig. 1. Complete architecture of UniTesK test suite

Fig. 1 demonstrates the complete set of the main components of UniTesK
test suite architecture.

Let us say some words on the origin of the components presented. Test engine
component is a predefined part of a test suite. There are several such components,
but the test developer does not need to write them himself. Instead, one of the
existing ones should be used. Oracles are supposed to be generated automatically
from specifications, which, in turn, are always developed by hand. Mediators are
always developed by hands.

Now we consider the structure of the test sequence iterator component in
more details paying most attention to the mechanism of iteration of applicable
input symbols.

Test sequence iterator should provide all possible input symbols for each
state of the automaton under traversal. Input symbol of the automaton under
traversal corresponds to some class of possible inputs for the system under test.

An arbitrary coverage can be described by a number of predicates depending
on the target operation identifier and a list of its input parameters. Each of these
predicates determines one element of the coverage. UniTesK technology requires
from specification designer to emphasize the basic partition of the specified op-

3

eration domain by means of special constructs, branch operators. The elements
of this basic partition correspond to subdomains where the specified operation
has a substantially different functionality.

It is impossible to automatically obtain input symbols for the particular ele-
ment of target coverage. So, test designer should provide handmade components
called iterators. To filter input symbols that correspond to coverage elements
already covered by the test, the components called coverage trackers are used.

Other functionality of test system iterator is represented by methods
getState() and call(). As our experience shows, in some simple cases both
of them can be generated automatically from the specification of the target
component. When we consider the coverage criteria based only on coverages of
component’s operations domains, the method call() can be generated in gen-
eral case. For most testing tasks it is enough, but sometimes, when we need to
cover some specific sequences of calls of target operations, we should write part
of this method by hands, and for this reasons this possibility exists in UniTesK
technology.

Iteration of applicable input symbols

Test Sequence Iterator

Iterators
Iterates some set of input sym-
bols, which should contain repre-
sentatives from all target coverage
classes6

Target Coverage Tracker
Performs filtering of input sym-
bols produced by iterators and
stores information on already ap-
plied ones to optimize the test

?

State Converter
Constructs and returns the iden-
tifier of current state on the base
of the state of the oracle

Caller
Performs the call of the oracle of
the target method corresponding
to the identifier of the input sym-
bol parameter

?
Oracle

Fig. 2. Typical structure of test sequence iterator component

Fig. 2 shows the structure of mechanism iterating applicable input symbols
used in UniTesK.

4

3 Vdm++TesK – UniTesK implementation for
VDM++

One of the main concepts of UniTesK lies in fact that tests are developed in the
specification extension of the programming language of the target system (target
language).

In Vdm++TesK, we deal with the target language that is a formal speci-
fications language, so no language extentions are needed to support constraint
specifications.

But, as usual, there are both good and bad sides in it.
The advantage is that in Vdm++TesK a test developer familiar with

VDM++ would deal exactly with VDM++, not with its extension.
The disadvantage lies in the fact that without such language extension

Vdm++TesK developers restrict their abilities to provide usable constructs that
are not supported by VDM++, but very handy in test development. Examples
of such constructs are declaration of additional coverage criteria (not supported
by Vdm++TesK) and test scenarios (more compact and handly notation for
the test sequence iterator). Implementation of these constructs in J@va can be
viewed at [2].

3.1 Test coverage criteria

The current version of Vdm++TesK supports the only test coverage criterion,
which is based on coverage of method’s different functionality (branch coverage
criterion).

This criterion is specified by user in a postcondition by dividing it in different
branches basing on pre-values of the object’s instance variables and the method’s
input values.

3.2 Implicit automaton definition

To test target methods’ behavior in different states of their objects, in
Vdm++TesK, as in UniTesK, automata-based testing is used.

The test automaton is specified in an implicit form – there is no need to
describe all of its states and transitions between them. It’s needed only to develop
the operation for acquiring the identifier if the tested object’s current state,
iteration of automaton input symbols, and operation that performs test impact
on the target system according to the input symbol.

In opposite to UniTesK, concept of the test scenarios is not implemented in
Vdm++TesK. Test scenario is a shorthand way to specify the test sequence iter-
ator (the tested automaton). In Vdm++TesK, part of the iterator’s components
(required classes, data and methods) are generated basing on the specifications
of the target methods, and the rest are developed by hands.

5

3.3 Mediators

In UniTesK, mediadors bind the model described in specification and the imple-
mentation, and bind models of different abstraction levels.

Vdm++TesK is aimed at testing of VDM++ models, so it’s supposed that
the implicit specification is written exactly for the tested model. So, mediators
are not needed for this propose.

Support for different levels of abstraction is absent in Vdm++TesK. Also,
Vdm++TesK does not support test components reusing.

4 Vdm++TesK example

In this section, application of Vdm++TesK will be described. The full descrip-
tion of test development using Vdm++TesK can be viewed in [1]

The test development process in Vdm++TesK consists of two basic steps:

– Development of the target class specification.
– Development of the test sequence iterator.

Specification of the target class consists of definition of its invariants and
description of pre- and postconditions of its methods. In Vdm++TesK, it’s sup-
posed that pre- and postcondition of the method are written jointly with its
explicit definition using the extended implicit operation definition VDM++ con-
struct.

Basing on the specification, oracle class is generated, which methods are
intended to assign a verdict about conformance between behavior of the corre-
sponding target method and its specification.

Basing on the list of jointly tested methods, the following classes are auto-
matically generated: class with components of test sequence iterator, and base
classes for automaton input symbols, one for each tested method.

Test developer should define handmade components by inheriting generated
and predefined classes and declaring there the needed data and overriding virtual
methods.

Finally, there will be a class that implements interface required by the pre-
defined component that traverse the automaton of the target system’s states.

4.1 Target system description

The target system is the class that implements a priority queue. An item is
placed in the queue with a particular value of priority. An item with a higher
priority will be removed from the queue earlier than item with a lower one. Items
with equal priorities will be removed in the order they were put in the queue.

A queue item is an object of a QueueItem class inheritor.

class QueueItem
end QueueItem

6

The queue is implemented in the PriorityQueue class. The PriorityQueue
class has the following functionality:

enqp(item: QueueItem, priority: int) places an item item with priority
priority into the queue.

enq(item: QueueItem) places an item item into the queue with the lowest
priority.

deq() item: [QueueItem] takes an item with the highest priority from the
queue. If the queue is empty, nil value is returned.

size() res: nat returns the length of the queue.
isEmpty() checks whether the queue is empty.

class PriorityQueue

values

public
MIN_PRIORITY : int = 0;

public
MAX_PRIORITY : int = 255;

instance variables

public
-- sequence of priorities
priorities : seq of int := [];

public
-- sequence of the queue items
-- queue(i) is the item with priority priorities(i)
queue : seq of QueueItem := [];

functions

protected
insertBefore[@item] : seq of @item * @item * nat +> seq1 of @item
insertBefore(list, elem, idx) ==

[list(i) | i in set {1, ..., idx-1}]
^ [elem]
^ [list(i) | i in set {idx, ..., len list}];

operations

public
enqp(item: QueueItem, priority: int)

7

== (dcl i : int := 1;
while i <= len priorities and priorities(i) >= priority
do i := i+1;
priorities := insertBefore[int](priorities, priority, i);
queue := insertBefore[QueueItem](queue, item, i);

);

public
enq(item: QueueItem)
== (priorities := insertBefore[int](priorities,

MIN_PRIORITY,
len priorities + 1

);
queue := insertBefore[QueueItem](queue, item, len queue + 1);

);

public
deq() item: [QueueItem]
== if len queue > 0

then (dcl item : QueueItem := hd queue;
priorities := tl priorities;
queue := tl queue;
return item;

)
else return nil;

public
size() res: nat
== return len queue;

public
isEmpty() res: bool
== return size() = 0;

end PriorityQueue

4.2 Implicit specification of the target class

The Vdm++TesK technology, it’s required that specification class would be a
successor of the Specification class.

class PriorityQueue
is subclass of Specification

...

8

end PriorityQueue

Let’s specify invariants of the instance variables.

inv forall i in set inds priorities &
priorities(i) >= MIN_PRIORITY

and priorities(i) <= MAX_PRIORITY;
inv len priorities = len queue;
inv forall i in set {2, ..., len priorities} &

priorities(i) <= priorities(i-1);

Now the behaviour of the methods will be defined in the form of constraint
specifications (pre- and postconditions).

Vdm++TesK supposes to combine specification of method’s behaviour and
partition of it’s input space in the single notation. Firstly, it reduces the value
of specifications and other sources of tests. Secondly, is simplifies the synchro-
nization between specifications and requrements to tests completeness.

Technically, this combination is achieved in the following way. The postcon-
dition should be written as if-elseif-else expression with each branch explicitly
marked. To mark these branches, the following function is used.

protected
branch : seq1 of char +> bool
branch(-) == true;

This function always returns true value. It’s only intention is to grant an
information for the static analysis of equivalence classes of the input space, and
to generate trace about calls to target methods and equivalence classes covered
by these calls.

public
enqp(item: QueueItem, priority: int)
== ...
ext wr priorities, queue
pre priority >= MIN_PRIORITY and priority <= MAX_PRIORITY
post if priorities~ = []

then
branch("Empty queue")

and priorities = [priority]
and queue = [item]

elseif priority not in set elems priorities~
then

branch("Priority is not in queue")
and priority in set elems priorities
and exists1 i in set inds priorities

& priorities(i) = priority
and queue(i) = item

9

and [priorities(k)
| k in set inds priorities
& k <> i
]

= priorities~
and [queue(k) | k in set inds queue & k <> i]

= queue~
else

branch("Priority is in queue")
and priority in set elems priorities
and exists1 i in set inds priorities

& priorities(i) = priority
and queue(i) = item
and [priorities(k)

| k in set inds priorities
& k <> i
]

= priorities~
and [queue(k) | k in set inds queue & k <> i]

= queue~
and forall k in set elems [k

| k in set
inds priorities

& priorities(k)
= priority

]
& k <= i;

In the enqp(), three branches are selected:

Empty queue. Placing an item into the empty queue.
Priority is not in queue. Placing an item with priority that doesn’t exist in

the queue.
Priority is in queue. Placing an item with priority that already exists in the

queue.

public
enq(item: QueueItem)
== ...
ext wr priorities, queue
pre true
post branch("single branch")

and priorities = priorities~ ^ [MIN_PRIORITY]
and queue = queue~ ^ [item];

public

10

deq() item: [QueueItem]
== ...
ext wr priorities, queue
pre true
post if len queue~ > 0

then branch("non-empty queue")
and priorities = tl priorities~
and queue = tl queue~
and item = hd queue~

else branch("empty queue")
and priorities = priorities~
and queue = queue~
and item = nil;

public
size() res: nat
== ...
ext rd queue
pre true
post branch("single branch")

and res = len queue;

public
isEmpty() res: bool
== ...
ext rd queue
pre true
post branch("single branch")

and res = (len queue = 0);

This specification should be translated using the Vdm++TesK tool to obtain
the oracle class which methods perform the checking of the conformance between
methods of the target class and their specifications.

4.3 Test sequence iterator

The test sequence iterator developed for the particular group of methods can be
divided into three parts:

Predefined. Components that are independent of particular group of tested
methods.

Generated Components that can be automatically generated basing on the
specifications of the tested methods.

Handmade. Components that should be developed manually.

Predefined components exist in Vdm++TesK toolbox as VDM++ classes.
Generated components are classes with methods, a few of which are abstract.

11

Handmade components are developed as classes that inherit predefined and gen-
erated ones.

Test state identifier It’s impossible to test the system in all its states. So,
an equivalence relationship is defined over them. Testing will be performed in
each of these equivalence classes. The test state identifier is built basing on the
current state of the system and is used to define to which equivalence class this
state belongs.

A class that inherits the Node class is used as the test state identifier. This
class contains data that determine the equivalence class of the corresponding
state, and the comparison method. This method applied with another test state
identifier object should return true, if both identifiers correspond to equivalent
states.

In this example, all queues with equal number of items with equal priority
are equivalent.

class PQueue_Node is subclass of Node

instance variables

pris : map int to nat := {|->};

operations

public
initPQueue_Node : map int to nat ==> PQueue_Node
initPQueue_Node(p_pris) == (pris := p_pris; return self;);

public
compare: Node ==> bool
compare(node) ==

return if isofclass(PQueue_Node, node)
then let n : PQueue_Node = node in n.pris = pris
else false;

end PQueue_Node

Automaton input symbols For each tested method, the class that defines
input symbol is generated. Each input symbol corresponds to a set of parameters
of the tested method.

To check the functionality of the enqp() method, it is not important, which
item will be placed in the queue. Instead, the priority with which an item is
placed is significant. So, an input symbol for this method should designate the
priority of an item to be put in the queue.

12

class PriorityQueue_enqp_Arc is subclass of PriorityQueue_enqp_arc
instance variables

public pri : int;
operations

public
initPriorityQueue_enqp_Arc : int ==> PriorityQueue_enqp_Arc
initPriorityQueue_enqp_Arc(p_pri) == (pri := p_pri; return self);

end PriorityQueue_enqp_Arc

The enq() method has the only parameter, item, and the other methods
have no parameters at all. So, there’s no need to develop classes that represent
input symbols corresponding to these methods.

Test sequence iterator A test sequence iterator is a class with well-defined
set of methods. The handmade part of the iterator is developed in the class that
iherits the generated one.

class SCRD_PQueue is subclass of SCRD_PQueue_generic

...

end SCRD_PQueue

The following operations should be defined in this class:

– The method that constructs the test state identifier basing on the current
state of the target system.

– Methods that iterate automaton input symbols.
– Methods that convert automaton input symbols into a set of parameters of

the corresponding target method.

The method that constructs the test state identifier will be as follows:

public
getNode: () ==> Node
getNode() ==

return
new PQueue_Node()

.initPQueue_Node(
{ p
|-> len [oracle_of_PriorityQueue.priorities(i)

| i in set
inds oracle_of_PriorityQueue.priorities

& oracle_of_PriorityQueue.priorities(i) = p
]

| p in set elems oracle_of_PriorityQueue.priorities
}

);

13

To iterate values of the priority, it is convenient to define the following func-
tion:

functions
nextPri : int +> int * bool
nextPri(pri)
== if pri = PriorityQueue‘MIN_PRIORITY

then mk_((PriorityQueue‘MIN_PRIORITY
+ PriorityQueue‘MAX_PRIORITY

) div 2,
true

)
elseif pri = PriorityQueue‘MAX_PRIORITY

then mk_(PriorityQueue‘MIN_PRIORITY,
false

)
else mk_(PriorityQueue‘MAX_PRIORITY,

true
);

Now, let’s write the operation for iteration of input symbols corresponding
to the enq() and enqp() methods. For each method, the operation of obtaining
the first input symbol, and the operation that construct the next symbol basing
on the previous one.

operations
PriorityQueue_enq_arc_init:

() ==> PriorityQueue_enq_arc * bool
PriorityQueue_enq_arc_init()
== return mk_(new PriorityQueue_enq_arc(),

len oracle_of_PriorityQueue.priorities < 10
);

PriorityQueue_enqp_arc_init:
() ==> PriorityQueue_enqp_arc * bool

PriorityQueue_enqp_arc_init()
== return mk_(new PriorityQueue_enqp_Arc()

.initPriorityQueue_enqp_Arc
(PriorityQueue‘MIN_PRIORITY),

len oracle_of_PriorityQueue.priorities < 10
);

PriorityQueue_enq_arc_next:
PriorityQueue_enq_arc ==> PriorityQueue_enq_arc * bool

PriorityQueue_enq_arc_next(cur_arc)

14

== return mk_(new PriorityQueue_enq_arc(), false);

PriorityQueue_enqp_arc_next:
PriorityQueue_enqp_arc ==> PriorityQueue_enqp_arc * bool

PriorityQueue_enqp_arc_next(cur_arc)
== let curArc : PriorityQueue_enqp_Arc = cur_arc,

mk_(p,v) = nextPri(curArc.pri)
in return mk_(new PriorityQueue_enqp_Arc()

.initPriorityQueue_enqp_Arc(p),
v

);

Now we should define two operations that convert input symbols correspond-
ing to the enqp() and enq() methods to values of their parameters. The values
of method’s parameters should be returned via the value of the composite type,
which fields have the names, types and order equal to the method’s parameters
ones.

operations
form_pvt_PriorityQueue_enq: Arc ==> pvt_PriorityQueue_enq
form_pvt_PriorityQueue_enq(cur_par)
== return mk_pvt_PriorityQueue_enq(new QueueItem());

form_pvt_PriorityQueue_enqp: Arc ==> pvt_PriorityQueue_enqp
form_pvt_PriorityQueue_enqp(cur_par) == (

dcl curArc: PriorityQueue_enqp_Arc := cur_par;
return mk_pvt_PriorityQueue_enqp(new QueueItem(),

curArc.pri
);

);

4.4 Test execution

The developed test can be executed using the following VDM++ statement:

new SCRDEngine().init(new SCRD_PQueue()).main()

During the test execution, a test trace is generated. The information about
absence or presence of an error and about the test coverage can be obtained
from this trace. The test trace can be directed to both a file and the console of
the VDM++ interpreter.

5 Conclusion

UniTesK has shown itself as technology that facilitate the development of high-
quality tests for complex software. The examples of application of UniTesK (and

15

KVEST, it’s successor) are projects of testing the following software: OS kernels,
protocols, request brokers, etc. Vdm++TesK allows to carry the experience of
UniTesK usage into both the VDM++ models and their programm implementa-
tions (due to the facility of translation the VDM++ test suite to programming
languages).

Vdm++TesK can be evolved in conjunction with the UniTesK common line.
At the time present, besides the traditional “black box” testing, UniTesK sup-
ports testing of distributed software components (e.g., protocols, see CTesK [3]),
exceptions (implemented in J@va [2]), and specific interfaces like EJB and SOAP.
The perspective goals are multithreading, load and real-timetesting. All of these
means are opened for Vdm++TesK.

The demo version of the Vdm++TesK tool is available for public downloads
at citeVdm++TesK.

References

1. http://redverst.ispras.ru/RedVerst/White Papers/vdmtesk/Main.html
2. http://www.ispras.ru/groups/rv/downloads/jatva.zip
3. http://www.ispras.ru/groups/rv/downloads/CTesK-Superlite.zip
4. http://www.ispras.ru/groups/rv/downloads/VDM++TesKDemo-1.3.zip
5. http://redverst.ispras.ru/
6. Igor B. Bourdonov, Alexander S. Kossatchev, Victor V. Kuliamin, Alexan-

der K. Petrenko. UniTesK Test Suite Architecture. In proc. of FME’02. To be
printed.

7. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Reading, MA: Addison-Wesley, 1995.

8. I. B. Burdonov, A. S. Kossatchev, and V. V. Kulyamin. Application of finite au-
tomatons for program testing. Programming and Computer Software, 26(2):61–73,
2000.

9. M. Obayashi, H. Kubota, S. P. McCarron, L. Mallet. The Assertion Based Testing
Tool for OOP: ADL2, available via http://adl.xopen.org/exgr/icse/icse98.htm

10. D. Peters, D. Parnas. Using Test Oracles Generated from Program Documentation.
IEEE Transactions on Software Engineering, 24(3):161–173, 1998.

11. I. Bourdonov, A. Kossatchev, A. Petrenko, and D. Galter. KVEST: Automated
Generation of Test Suites from Formal Specifications. FM’99: Formal Methods.
LNCS, volume 1708, Springer-Verlag, 1999, pp. 608–621.

16

